Semiclassical spectral estimates for Toeplitz operators

David Borthwick; Thierry Paul; Alejandro Uribe

Annales de l'institut Fourier (1998)

  • Volume: 48, Issue: 4, page 1189-1229
  • ISSN: 0373-0956

Abstract

top
Let X be a compact Kähler manifold with integral Kähler class and L X a holomorphic Hermitian line bundle whose curvature is the symplectic form of X . Let H C ( X , ) be a Hamiltonian, and let T k be the Toeplitz operator with multiplier H acting on the space k = H 0 ( X , L k ) . We obtain estimates on the eigenvalues and eigensections of T k as k , in terms of the classical Hamilton flow of H . We study in some detail the case when X is an integral coadjoint orbit of a Lie group.

How to cite

top

Borthwick, David, Paul, Thierry, and Uribe, Alejandro. "Semiclassical spectral estimates for Toeplitz operators." Annales de l'institut Fourier 48.4 (1998): 1189-1229. <http://eudml.org/doc/75314>.

@article{Borthwick1998,
abstract = {Let $X$ be a compact Kähler manifold with integral Kähler class and $L\rightarrow X$ a holomorphic Hermitian line bundle whose curvature is the symplectic form of $X$. Let $H\in C^\infty (X,\{\Bbb R\})$ be a Hamiltonian, and let $T_k$ be the Toeplitz operator with multiplier $H$ acting on the space $\{\cal H\}_k = H^0(X, L^\{\otimes k\})$. We obtain estimates on the eigenvalues and eigensections of $T_k$ as $k\rightarrow \infty $, in terms of the classical Hamilton flow of $H$. We study in some detail the case when $X$ is an integral coadjoint orbit of a Lie group.},
author = {Borthwick, David, Paul, Thierry, Uribe, Alejandro},
journal = {Annales de l'institut Fourier},
keywords = {Toeplitz operators; semiclassical analysis; spectral theory; geometric quantization},
language = {eng},
number = {4},
pages = {1189-1229},
publisher = {Association des Annales de l'Institut Fourier},
title = {Semiclassical spectral estimates for Toeplitz operators},
url = {http://eudml.org/doc/75314},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Borthwick, David
AU - Paul, Thierry
AU - Uribe, Alejandro
TI - Semiclassical spectral estimates for Toeplitz operators
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1189
EP - 1229
AB - Let $X$ be a compact Kähler manifold with integral Kähler class and $L\rightarrow X$ a holomorphic Hermitian line bundle whose curvature is the symplectic form of $X$. Let $H\in C^\infty (X,{\Bbb R})$ be a Hamiltonian, and let $T_k$ be the Toeplitz operator with multiplier $H$ acting on the space ${\cal H}_k = H^0(X, L^{\otimes k})$. We obtain estimates on the eigenvalues and eigensections of $T_k$ as $k\rightarrow \infty $, in terms of the classical Hamilton flow of $H$. We study in some detail the case when $X$ is an integral coadjoint orbit of a Lie group.
LA - eng
KW - Toeplitz operators; semiclassical analysis; spectral theory; geometric quantization
UR - http://eudml.org/doc/75314
ER -

References

top
  1. [1] V.I. ARNOL'D, Une classe caractéristique intervenant dans les conditions de quantification, in V. P.MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) 341-361. 
  2. [2] F. A. BEREZIN, General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174. Zbl1272.53082
  3. [3] N. L. BALAZS and A. VOROS, The quantized Baker's transformation, Annals of Physics, 180 (1989), 1-31. Zbl0664.58045MR90g:58075
  4. [4] M. BORDEMANN, E. MEINRENKEN, and M. SCHLICHENMAIER, Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys., 165 (1994), 281-296. Zbl0813.58026MR96f:58067
  5. [5] D. BORTHWICK, T. PAUL, and A. URIBE, Legendrian distributions and non-vanishing of Poincaré series, Invent. Math., 122 (1995), 359-402. Zbl0859.58015
  6. [6] L. BOUTET DE MONVEL, On the index of Toeplitz operators of several complex variables, Invent. Math., 50 (1979), 249-272. Zbl0398.47018MR80j:58063
  7. [7] L. BOUTET DE MONVEL, Hypoelliptic operators with double characteristics and related pseudodifferentiel operators, Comm. Pure Appl. Math., 27 (1974), 585-639. Zbl0294.35020MR51 #6498
  8. [8] L. BOUTET DE MONVEL and V. GUILLEMIN, The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton University Press, Princeton, New Jersey (1981). Zbl0469.47021MR85j:58141
  9. [9] L. BOUTET DE MONVEL and J. SJÖSTRAND, Sur la singularité des noyaux de Bergmann et de Szego, Astérisque, 34-35 (1976), 123-164. Zbl0344.32010
  10. [10] M. CAHEN, S. GUTT, and J. RAWNSLEY, Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62; Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc., 337 (1993) 73-98; Quantization of Kähler manifolds. III, preprint (1993). Zbl0719.53044
  11. [11] M. DEGLI ESPOSTI, S. GRAFFI and S. ISOLA, Stochastic properties of the quantum Arnol'd cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509. Zbl0822.58022
  12. [12] J. DIXMIER, Enveloping Algebras, North-Holland, 1977. 
  13. [13] J. J. DUISTERMAAT and V. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
  14. [14] G.B. FOLLAND, Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, Princeton N.J. 1989. Zbl0682.43001MR92k:22017
  15. [15] S. GRAFFI and T. PAUL, Quantum intrinsically degenerate and classical secular perturbation theory, preprint. 
  16. [16] V. GUILLEMIN, Symplectic spinors and partial differential equations. Coll. Inst. CNRS 237, Géométrie Symplectique et Physique Mathématique, 217-252. Zbl0341.58014MR57 #1576
  17. [17] V. GUILLEMIN and S. STERNBERG, Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. Zbl0503.58018MR83m:58040
  18. [18] V. GUILLEMIN and A. URIBE, Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. Zbl0686.58040MR90e:58159
  19. [19] J.H. HANNAY and M.V. BERRY, Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica, D 1 (1980), 267-291. Zbl1194.81107
  20. [20] L. HÖRMANDER, The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-1985. Zbl0612.35001
  21. [21] T. PAUL and A. URIBE, The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis, 132, No.1 (1995), 192-249. Zbl0837.35106MR97c:58160
  22. [22] T. PAUL and A. URIBE, On the pointwise behavior of semi-classical measures, Comm. Math. Phys., 175 (1996), 229-258. Zbl0853.47038MR97a:58189
  23. [23] T. PAUL and A. URIBE, Weighted Weyl estimates near an elliptic trajectory, Revista Matemática Iberoamericana, 14 (1998), 145-165. Zbl0923.58055MR99g:58122
  24. [24] D. ROBERT, Autour de l'approximation semi-classique, Birkhauser 1987. Zbl0621.35001MR89g:81016
  25. [25] M. TAYLOR and A. URIBE, Semiclassical spectra of gauge fields, J. Funct. Anal., 110 (1992), 1-46. Zbl0772.58066MR94d:58143
  26. [26] L. YAFFE, Large N limits as classical mechanics, Rev. Mod. Phys., 54 (1982), 407-435. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.