Semiclassical spectral estimates for Toeplitz operators
David Borthwick; Thierry Paul; Alejandro Uribe
Annales de l'institut Fourier (1998)
- Volume: 48, Issue: 4, page 1189-1229
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBorthwick, David, Paul, Thierry, and Uribe, Alejandro. "Semiclassical spectral estimates for Toeplitz operators." Annales de l'institut Fourier 48.4 (1998): 1189-1229. <http://eudml.org/doc/75314>.
@article{Borthwick1998,
abstract = {Let $X$ be a compact Kähler manifold with integral Kähler class and $L\rightarrow X$ a holomorphic Hermitian line bundle whose curvature is the symplectic form of $X$. Let $H\in C^\infty (X,\{\Bbb R\})$ be a Hamiltonian, and let $T_k$ be the Toeplitz operator with multiplier $H$ acting on the space $\{\cal H\}_k = H^0(X, L^\{\otimes k\})$. We obtain estimates on the eigenvalues and eigensections of $T_k$ as $k\rightarrow \infty $, in terms of the classical Hamilton flow of $H$. We study in some detail the case when $X$ is an integral coadjoint orbit of a Lie group.},
author = {Borthwick, David, Paul, Thierry, Uribe, Alejandro},
journal = {Annales de l'institut Fourier},
keywords = {Toeplitz operators; semiclassical analysis; spectral theory; geometric quantization},
language = {eng},
number = {4},
pages = {1189-1229},
publisher = {Association des Annales de l'Institut Fourier},
title = {Semiclassical spectral estimates for Toeplitz operators},
url = {http://eudml.org/doc/75314},
volume = {48},
year = {1998},
}
TY - JOUR
AU - Borthwick, David
AU - Paul, Thierry
AU - Uribe, Alejandro
TI - Semiclassical spectral estimates for Toeplitz operators
JO - Annales de l'institut Fourier
PY - 1998
PB - Association des Annales de l'Institut Fourier
VL - 48
IS - 4
SP - 1189
EP - 1229
AB - Let $X$ be a compact Kähler manifold with integral Kähler class and $L\rightarrow X$ a holomorphic Hermitian line bundle whose curvature is the symplectic form of $X$. Let $H\in C^\infty (X,{\Bbb R})$ be a Hamiltonian, and let $T_k$ be the Toeplitz operator with multiplier $H$ acting on the space ${\cal H}_k = H^0(X, L^{\otimes k})$. We obtain estimates on the eigenvalues and eigensections of $T_k$ as $k\rightarrow \infty $, in terms of the classical Hamilton flow of $H$. We study in some detail the case when $X$ is an integral coadjoint orbit of a Lie group.
LA - eng
KW - Toeplitz operators; semiclassical analysis; spectral theory; geometric quantization
UR - http://eudml.org/doc/75314
ER -
References
top- [1] V.I. ARNOL'D, Une classe caractéristique intervenant dans les conditions de quantification, in V. P.MASLOV, Théorie des perturbations et Méthodes asymptotiques, Dunod, Paris (1972) 341-361.
- [2] F. A. BEREZIN, General concept of quantization, Comm. Math. Phys., 40 (1975), 153-174. Zbl1272.53082
- [3] N. L. BALAZS and A. VOROS, The quantized Baker's transformation, Annals of Physics, 180 (1989), 1-31. Zbl0664.58045MR90g:58075
- [4] M. BORDEMANN, E. MEINRENKEN, and M. SCHLICHENMAIER, Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits, Comm. Math. Phys., 165 (1994), 281-296. Zbl0813.58026MR96f:58067
- [5] D. BORTHWICK, T. PAUL, and A. URIBE, Legendrian distributions and non-vanishing of Poincaré series, Invent. Math., 122 (1995), 359-402. Zbl0859.58015
- [6] L. BOUTET DE MONVEL, On the index of Toeplitz operators of several complex variables, Invent. Math., 50 (1979), 249-272. Zbl0398.47018MR80j:58063
- [7] L. BOUTET DE MONVEL, Hypoelliptic operators with double characteristics and related pseudodifferentiel operators, Comm. Pure Appl. Math., 27 (1974), 585-639. Zbl0294.35020MR51 #6498
- [8] L. BOUTET DE MONVEL and V. GUILLEMIN, The spectral theory of Toeplitz operators. Annals of Mathematics Studies No. 99, Princeton University Press, Princeton, New Jersey (1981). Zbl0469.47021MR85j:58141
- [9] L. BOUTET DE MONVEL and J. SJÖSTRAND, Sur la singularité des noyaux de Bergmann et de Szego, Astérisque, 34-35 (1976), 123-164. Zbl0344.32010
- [10] M. CAHEN, S. GUTT, and J. RAWNSLEY, Quantization of Kähler manifolds. I: geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62; Quantization of Kähler manifolds. II, Trans. Amer. Math. Soc., 337 (1993) 73-98; Quantization of Kähler manifolds. III, preprint (1993). Zbl0719.53044
- [11] M. DEGLI ESPOSTI, S. GRAFFI and S. ISOLA, Stochastic properties of the quantum Arnol'd cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509. Zbl0822.58022
- [12] J. DIXMIER, Enveloping Algebras, North-Holland, 1977.
- [13] J. J. DUISTERMAAT and V. GUILLEMIN, The spectrum of positive elliptic operators and periodic bicharacteristics, Invent. Math., 29 (1975), 39-79. Zbl0307.35071MR53 #9307
- [14] G.B. FOLLAND, Harmonic Analysis in Phase Space, Annals of Mathematics Studies 122, Princeton University Press, Princeton N.J. 1989. Zbl0682.43001MR92k:22017
- [15] S. GRAFFI and T. PAUL, Quantum intrinsically degenerate and classical secular perturbation theory, preprint.
- [16] V. GUILLEMIN, Symplectic spinors and partial differential equations. Coll. Inst. CNRS 237, Géométrie Symplectique et Physique Mathématique, 217-252. Zbl0341.58014MR57 #1576
- [17] V. GUILLEMIN and S. STERNBERG, Geometric quantization and multiplicities of group representations, Invent. Math., 67 (1982), 515-538. Zbl0503.58018MR83m:58040
- [18] V. GUILLEMIN and A. URIBE, Circular symmetry and the trace formula, Invent. Math., 96 (1989), 385-423. Zbl0686.58040MR90e:58159
- [19] J.H. HANNAY and M.V. BERRY, Quantization of linear maps-Fresnel diffraction by a periodic grating, Physica, D 1 (1980), 267-291. Zbl1194.81107
- [20] L. HÖRMANDER, The analysis of linear partial differential operators I-IV, Springer-Verlag, 1983-1985. Zbl0612.35001
- [21] T. PAUL and A. URIBE, The semi-classical trace formula and propagation of wave packets, J. Funct. Analysis, 132, No.1 (1995), 192-249. Zbl0837.35106MR97c:58160
- [22] T. PAUL and A. URIBE, On the pointwise behavior of semi-classical measures, Comm. Math. Phys., 175 (1996), 229-258. Zbl0853.47038MR97a:58189
- [23] T. PAUL and A. URIBE, Weighted Weyl estimates near an elliptic trajectory, Revista Matemática Iberoamericana, 14 (1998), 145-165. Zbl0923.58055MR99g:58122
- [24] D. ROBERT, Autour de l'approximation semi-classique, Birkhauser 1987. Zbl0621.35001MR89g:81016
- [25] M. TAYLOR and A. URIBE, Semiclassical spectra of gauge fields, J. Funct. Anal., 110 (1992), 1-46. Zbl0772.58066MR94d:58143
- [26] L. YAFFE, Large N limits as classical mechanics, Rev. Mod. Phys., 54 (1982), 407-435.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.