The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This paper is concerned with the analysis and implementation of spectral Galerkin methods for a class of Fokker-Planck equations that arises from the kinetic theory of dilute polymers. A relevant feature of the class of equations under consideration from the viewpoint of mathematical analysis and numerical approximation is the presence of an unbounded drift coefficient, involving a smooth convex potential that is equal to along the boundary of the computational domain . Using a symmetrization...
This paper is concerned with the analysis and implementation of spectral Galerkin
methods for a class of Fokker-Planck equations that arises
from the kinetic theory of dilute polymers. A relevant feature of the class of equations
under consideration from the viewpoint of mathematical analysis and numerical approximation is
the presence of an unbounded drift coefficient, involving a smooth convex potential that is equal to +∞ along
the boundary ∂ of the computational domain .
Using a symmetrization...
We examine a heterogeneous alternating-direction method for the approximate solution of the FENE Fokker–Planck equation from polymer fluid dynamics and we use this method to solve a coupled (macro-micro) Navier–Stokes–Fokker–Planck system for dilute polymeric fluids. In this context the Fokker–Planck equation is posed on a high-dimensional domain and is therefore challenging from a computational point of view. The heterogeneous alternating-direction scheme combines a spectral Galerkin method for...
We propose a new reduced basis element-cum-component mode synthesis approach for parametrized elliptic coercive partial differential equations. In the Offline stage we construct a Library of interoperable parametrized reference relevant to some family of problems; in the Online stage we instantiate and connect reference components (at ports) to rapidly form and query parametric . The method is based on static condensation at the interdomain level, a conforming eigenfunction “port” representation...
Download Results (CSV)