A Static condensation Reduced Basis Element method : approximation and a posteriori error estimation
Dinh Bao Phuong Huynh; David J. Knezevic; Anthony T. Patera
- Volume: 47, Issue: 1, page 213-251
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] H. Antil, M. Heinkenschloss, R.H.W. Hoppe and D.C. Sorensen, Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Visualization Sci.13 (2010) 249–264. Zbl1220.65074MR2748450
- [2] H. Antil, M. Heinkenschloss and R.H.W. Hoppe, Domain decomposition and balanced truncation model reduction for shape optimization of the Stokes system. Optim. Methods Softw. 26 (2011) 643–669, doi: 10.1080/10556781003767904. Zbl1227.49046MR2837792
- [3] J.K. Bennighof and R.B. Lehoucq. An automated multilevel substructuring method for eigenspace computation in linear elastodynamics. SIAM J. Sci. Comput.25 (2004) 2084–2106. Zbl1133.65304MR2086832
- [4] A. Bermúdez and F. Pena, Galerkin lumped parameter methods for transient problems. Int. J. Numer. Methods Eng. 87 (2011) 943–961, doi: 10.1002/nme.3140. Zbl1242.80005MR2835769
- [5] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova and P. Wojtaszczyk, Convergence rates for greedy algorithms in reduced basis methods. Technical Report, Aachen Institute for Advanced Study in Computational Engineering Science, preprint : AICES-2010/05-2 (2010). Zbl1229.65193MR2821591
- [6] F. Bourquin, Component mode synthesis and eigenvalues of second order operators : discretization and algorithm. ESAIM : M2AN 26 (1992) 385–423. Zbl0765.65100MR1160133
- [7] S.C. Brenner, The condition number of the Schur complement in domain decompostion. Numer. Math.83 (1999) 187–203. Zbl0936.65141MR1712684
- [8] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme and G. Turinici, A priori convergence of the greedy algorithm for the parametrized reduced basis. To appear in ESAIM : M2AN (2010). Zbl1272.65084
- [9] Y. Chen, J.S. Hesthaven and Y. Maday, A Seamless Reduced Basis Element Methods for 2D Maxwell’s Problem : An Introduction, edited by J. Hesthaven and E.M. Rønquist, in Spectral and High Order Methods for Partial Differential Equations-Selected papers from the ICASOHOM’09 Conference 76 (2011). Zbl1217.78056MR3204811
- [10] R. Craig and M. Bampton, Coupling of substructures for dynamic analyses. AIAA J.6 (1968) 1313–1319. Zbl0159.56202
- [11] J.L. Eftang, D.B.P. Huynh, D.J. Knezevic, E.M. Rønquist and A.T. Patera, Adaptive port reduction in static condensation, in MATHMOD 2012 – 7th Vienna International Conference on Mathematical Modelling (2012) (Submitted).
- [12] M. Ganesh, J.S. Hesthaven and B. Stamm, A reduced basis method for multiple electromagnetic scattering in three dimensions. Technical Report 2011-9, Scientific Computing Group, Brown University, Providence, RI, USA (2011). Zbl1254.78012
- [13] G. Golub and C. van Loan, Matrix Computations. Johns Hopkins University Press (1996). Zbl0865.65009MR1417720
- [14] B. Haggblad and L. Eriksson, Model reduction methods for dynamic analyses of large structures. Comput. Struct.47 (1993) 735–749. Zbl0811.73062MR1224096
- [15] U.L. Hetmaniuk and R.B. Lehoucq, A special finite element method based on component mode synthesis. ESAIM : M2AN 44 (2010) 401–420. Zbl1190.65173MR2666649
- [16] T.Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys.134 (1997) 169–189. Zbl0880.73065MR1455261
- [17] W.C. Hurty, On the dynamic analysis of structural systems using component modes, in First AIAA Annual Meeting. Washington, DC, AIAA paper, No. 64-487 (1964).
- [18] D.B.P. Huynh, G. Rozza, S. Sen and A.T. Patera, A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math.345 (2007) 473–478. Zbl1127.65086MR2367928
- [19] L. Iapichino, Quarteroni and G.A., Rozza, A reduced basis hybrid method for the coupling of parametrized domains represented by fluidic networks. Comput. Methods Appl. Mech. Eng. 221-222 (2012) 63–82. Zbl1253.76139MR2913950
- [20] H. Jakobsson, F. Beingzon and M.G. Larson, Adaptive component mode synthesis in linear elasticity. Int. J. Numer. Methods Eng.86 (2011) 829–844. Zbl1235.74288MR2829770
- [21] S. Kaulmann, M. Ohlberger and B. Haasdonk, A new local reduced basis discontinuous galerkin approach for heterogeneous multiscale problems. C. R. Math.349 (2011) 1233–1238. Zbl1269.65127MR2861991
- [22] B.S. Kirk, J.W. Peterson, R.H. Stogner and G.F. Carey, libMesh : A C++ library for Parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22 (2006) 237–254.
- [23] D.J. Knezevic and J.W. Peterson, A high-performance parallel implementation of the certified reduced basis method. Comput. Methods Appl. Mech. Eng.200 (2011) 1455–1466. Zbl1228.76109
- [24] Y Maday and EM Rønquist, The reduced basis element method : Application to a thermal fin problem. SIAM J. Sci. Comput. 26 (2004) 240–258. Zbl1077.65120MR2114342
- [25] Y. Maday, A.T. Patera and G. Turinici, A priori convergence theory for reduced-basis approximations of single-parameter elliptic partial differential equations. J. Sci. Comput.17 (2002) 437–446. Zbl1014.65115MR1910581
- [26] N.C. Nguyen, A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys.227 (2007) 9807–9822. Zbl1155.65391MR2469035
- [27] C. Prud’homme, D. Rovas, K. Veroy, Y. Maday, A.T. Patera and G. Turinici, Reliable real-time solution of parametrized partial differential equations : Reduced-basis output bounds methods. J. Fluids Eng.124 (2002) 70–80.
- [28] G. Rozza, D.B.P. Huynh and A.T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Arch. Comput. Methods Eng.15 (2008) 229–275. Zbl1304.65251MR2430350