Inverse spectral results on even dimensional tori
Given a Hermitian line bundle over a flat torus , a connection on , and a function on , one associates a Schrödinger operator acting on sections of ; its spectrum is denoted . Motivated by work of V. Guillemin in dimension two, we consider line bundles over tori of arbitrary even dimension with “translation invariant” connections , and we address the extent to which the spectrum determines the potential . With a genericity condition, we show that if the connection is invariant under...