The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The aim of this paper is to develop a finite element method which allows computing
the buckling coefficients and modes of a non-homogeneous Timoshenko beam.
Studying the spectral properties of a non-compact operator,
we show that the relevant buckling coefficients correspond to isolated
eigenvalues of finite multiplicity.
Optimal order error estimates are proved for the eigenfunctions
as well as a double order of convergence for
the eigenvalues using classical abstract spectral approximation theory...
The aim of this paper is to develop a finite element method which allows computing
the buckling coefficients and modes of a non-homogeneous Timoshenko beam.
Studying the spectral properties of a non-compact operator,
we show that the relevant buckling coefficients correspond to isolated
eigenvalues of finite multiplicity.
Optimal order error estimates are proved for the eigenfunctions
as well as a double order of convergence for
the eigenvalues using classical abstract spectral approximation theory...
Download Results (CSV)