A locking-free finite element method for the buckling problem of a non-homogeneous Timoshenko beam
Carlo Lovadina; David Mora; Rodolfo Rodríguez
ESAIM: Mathematical Modelling and Numerical Analysis (2011)
- Volume: 45, Issue: 4, page 603-626
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- D.N. Arnold, Discretization by finite elements of a model parameter dependent problem. Numer. Math.37 (1981) 405–421.
- I. Babuška and J. Osborn, Eigenvalue Problems, in Handbook of Numerical AnalysisII, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991) 641–787.
- F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991).
- M. Dauge and M. Suri, Numerical approximation of the spectra of non-compact operators arising in buckling problems. J. Numer. Math.10 (2002) 193–219.
- J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 1: The problem of convergence. RAIRO Anal. Numér.12 (1978) 97–112.
- J. Descloux, N. Nassif and J. Rappaz, On spectral approximation. Part 2: Error estimates for the Galerkin method. RAIRO Anal. Numér.12 (1978) 113–119.
- R.S. Falk, Finite Elements for the Reissner-Mindlin Plate, in Mixed Finite Elements, Compatibility Conditions, and Applications, D. Boffi and L. Gastaldi Eds., Springer-Verlag, Berlin (2008) 195–230.
- E. Hernández, E. Otárola, R. Rodríguez and F. Sanhueza, Approximation of the vibration modes of a Timoshenko curved rod of arbitrary geometry. IMA J. Numer. Anal.29 (2009) 180–207.
- T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag, Berlin (1966).
- C. Lovadina, D. Mora and R. Rodríguez, Approximation of the buckling problem for Reissner-Mindlin plates. SIAM J. Numer. Anal.48 (2010) 603–632.
- J.N. Reddy, An Introduction to the Finite Element Method. McGraw-Hill, New York (1993).
- B. Szabó and G. Királyfalvi, Linear models of buckling and stress-stiffening. Comput. Methods Appl. Mech. Eng.171 (1999) 43–59.