A Lie version of Turaev’s -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a -quasi-Frobenius Lie algebra for a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra together with a left -module structure which acts on via derivations and for which is -invariant. Geometrically, -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic...
A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a -symplectic Lie groupoid; the “" is motivated by the fact that each target fiber of a -symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid , we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid...
Download Results (CSV)