Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

𝔤 -quasi-Frobenius Lie algebras

David N. Pham — 2016

Archivum Mathematicum

A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic...

The Lie groupoid analogue of a symplectic Lie group

David N. Pham — 2021

Archivum Mathematicum

A symplectic Lie group is a Lie group with a left-invariant symplectic form. Its Lie algebra structure is that of a quasi-Frobenius Lie algebra. In this note, we identify the groupoid analogue of a symplectic Lie group. We call the aforementioned structure a t -symplectic Lie groupoid; the “ t " is motivated by the fact that each target fiber of a t -symplectic Lie groupoid is a symplectic manifold. For a Lie groupoid 𝒢 M , we show that there is a one-to-one correspondence between quasi-Frobenius Lie algebroid...

Page 1

Download Results (CSV)