𝔤 -quasi-Frobenius Lie algebras

David N. Pham

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 4, page 233-262
  • ISSN: 0044-8753

Abstract

top
A Lie version of Turaev’s G ¯ -Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a 𝔤 -quasi-Frobenius Lie algebra for 𝔤 a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra ( 𝔮 , β ) together with a left 𝔤 -module structure which acts on 𝔮 via derivations and for which β is 𝔤 -invariant. Geometrically, 𝔤 -quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group G which acts via symplectic Lie group automorphisms. In addition to geometry, 𝔤 -quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, 𝔤 -quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in 𝐑𝐞𝐩 ( 𝔤 ) . If 𝔤 is now equipped with a Lie bialgebra structure, then the categorical formulation of G ¯ -Frobenius algebras given in [16] suggests that the Lie version of a G ¯ -Frobenius algebra is a quasi-Frobenius Lie object in 𝐑𝐞𝐩 ( D ( 𝔤 ) ) , where D ( 𝔤 ) is the associated (semiclassical) Drinfeld double. We show that if 𝔤 is a quasitriangular Lie bialgebra, then every 𝔤 -quasi-Frobenius Lie algebra has an induced D ( 𝔤 ) -action which gives it the structure of a D ( 𝔤 ) -quasi-Frobenius Lie algebra.

How to cite

top

Pham, David N.. "$\mathfrak {g}$-quasi-Frobenius Lie algebras." Archivum Mathematicum 052.4 (2016): 233-262. <http://eudml.org/doc/287569>.

@article{Pham2016,
abstract = {A Lie version of Turaev’s $\overline\{G\}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak \{g\}$-quasi-Frobenius Lie algebra for $\mathfrak \{g\}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak \{q\},\beta )$ together with a left $\mathfrak \{g\}$-module structure which acts on $\mathfrak \{q\}$ via derivations and for which $\beta $ is $\mathfrak \{g\}$-invariant. Geometrically, $\mathfrak \{g\}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak \{g\}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak \{g\}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf \{Rep\}(\mathfrak \{g\})$. If $\mathfrak \{g\}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline\{G\}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline\{G\}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf \{Rep\}(D(\mathfrak \{g\}))$, where $D(\mathfrak \{g\})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak \{g\}$ is a quasitriangular Lie bialgebra, then every $\mathfrak \{g\}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak \{g\})$-action which gives it the structure of a $D(\mathfrak \{g\})$-quasi-Frobenius Lie algebra.},
author = {Pham, David N.},
journal = {Archivum Mathematicum},
keywords = {symplectic Lie groups; quasi-Frobenius Lie algebras; Lie bialgebras; Drinfeld double; group actions},
language = {eng},
number = {4},
pages = {233-262},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$\mathfrak \{g\}$-quasi-Frobenius Lie algebras},
url = {http://eudml.org/doc/287569},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Pham, David N.
TI - $\mathfrak {g}$-quasi-Frobenius Lie algebras
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 4
SP - 233
EP - 262
AB - A Lie version of Turaev’s $\overline{G}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak {g}$-quasi-Frobenius Lie algebra for $\mathfrak {g}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak {q},\beta )$ together with a left $\mathfrak {g}$-module structure which acts on $\mathfrak {q}$ via derivations and for which $\beta $ is $\mathfrak {g}$-invariant. Geometrically, $\mathfrak {g}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak {g}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak {g}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf {Rep}(\mathfrak {g})$. If $\mathfrak {g}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline{G}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline{G}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf {Rep}(D(\mathfrak {g}))$, where $D(\mathfrak {g})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak {g}$ is a quasitriangular Lie bialgebra, then every $\mathfrak {g}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak {g})$-action which gives it the structure of a $D(\mathfrak {g})$-quasi-Frobenius Lie algebra.
LA - eng
KW - symplectic Lie groups; quasi-Frobenius Lie algebras; Lie bialgebras; Drinfeld double; group actions
UR - http://eudml.org/doc/287569
ER -

References

top
  1. Abrams, L., 10.1142/S0218216596000333, J. Knot Theory Ramifications 5 (1996), 569–587. (1996) Zbl0897.57015MR1414088DOI10.1142/S0218216596000333
  2. Agaoka, Y., 10.1090/S0002-9939-01-05828-2, Proc. Amer. Math. Soc. 129 (9) (2001), 2753–2762, (electronic). (2001) Zbl1021.53052MR1838799DOI10.1090/S0002-9939-01-05828-2
  3. Atiyah, M.F., 10.1007/BF02698547, Publ. Math. Inst. Hautes Études Sci. 68 (1988), 175–186. (1988) MR1001453DOI10.1007/BF02698547
  4. Baues, O., Cortés, V., Symplectic Lie Groups I–III, arXiv:1307.1629. 
  5. Boyom, N., 10.1512/iumj.1993.42.42053, Indiana Univ. Math. J. 42 (4) (1993), 1149–1168. (1993) Zbl0846.58023MR1266088DOI10.1512/iumj.1993.42.42053
  6. Burde, D., 10.1515/FORUM.2006.038, Forum Math. 18 (5) (2006), 769–787. (2006) Zbl1206.17009MR2265899DOI10.1515/FORUM.2006.038
  7. Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994. (1994) Zbl0839.17009MR1300632
  8. Chu, B., 10.1090/S0002-9947-1974-0342642-7, Trans. Amer. Math. Soc. 197 (1974), 145–159. (1974) MR0342642DOI10.1090/S0002-9947-1974-0342642-7
  9. Drinfeld, V.G., Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian). (1983) Zbl0526.58017MR0688240
  10. Etingof, P., Schiffman, O., Lectures on Quantum Groups, Lect. Math. Phys., Int. Press, 1998. (1998) MR1698405
  11. Golubitsky, M., Guillemin, V., 10.1007/978-1-4615-7904-5_3, Grad. Texts in Math., vol. 14, Springer, Berlin, 1973. (1973) Zbl0294.58004MR0341518DOI10.1007/978-1-4615-7904-5_3
  12. Goyvaerts, I., Vercruysse, J., A Note on the Categorification of Lie Algebras, Lie Theory and Its Applications in Physics, Springer Proceedings in Math. Stat., 2013, pp. 541–550. (2013) Zbl1280.17027MR3070680
  13. Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, 1974. (1974) Zbl0361.57001MR0348781
  14. Helgason, S., Differential Geometry, Lie groups, and Symmetric Spaces, Pure Appl. Math., 1978. (1978) Zbl0451.53038MR1834454
  15. Kaufmann, R., 10.1142/S0129167X03001831, Internat. J. Math. 14 (6) (2003), 573–617. (2003) Zbl1083.57037MR1997832DOI10.1142/S0129167X03001831
  16. Kaufmann, R., Pham, D., 10.1142/S0129167X09005431, Internat. J. Math. 20 (5) (2009), 623–657. (2009) Zbl1174.14048MR2526310DOI10.1142/S0129167X09005431
  17. Kosmann-Schwarzbach, Y., Poisson-Drinfel’d groups, Publ. Inst. Rech. Math. Av. 5 (12) (1987). (1987) 
  18. Kosmann-Schwarzbach, Y., Lie Bialgebras, Poisson Lie groups and dressing transformations, Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170. (1997) Zbl1078.37517MR1636293
  19. Lee, J., Introduction to Smooth Manifolds, Springer-Verlag, New York Inc., 2003. (2003) MR1930091
  20. Lu, J., Weinstein, A., 10.4310/jdg/1214444324, J. Differential Geom. 31 (2) (1990), 501–526. (1990) Zbl0673.58018MR1037412DOI10.4310/jdg/1214444324
  21. Mikami, K., 10.1090/conm/179/01940, Contemp. Math. 179 (1994), 173–192. (1994) Zbl0820.58021MR1319608DOI10.1090/conm/179/01940
  22. Ooms, A., 10.1016/0021-8693(74)90154-9, J. Algebra 32 (1974), 488–500. (1974) Zbl0355.17014MR0387365DOI10.1016/0021-8693(74)90154-9
  23. Ooms, A., 10.1080/00927878008822445, Comm. Algebra 8 (1) (1980), 13–52. (1980) Zbl0421.17004MR0556091DOI10.1080/00927878008822445
  24. Semenov-Tian-Shansky, M.A., 10.1007/BF01076717, Funct. Anal. Appl. 17 (1983), 259–272. (1983) DOI10.1007/BF01076717
  25. Turaev, V., Homotopy field theory in dimension 2 and group-algebras, arXiv.org:math/9910010, (1999). 
  26. Vinberg, E.B., A course in algebra, Graduate Studies in Math., vol. 56, AMS, 2003. (2003) Zbl1016.00003MR1974508
  27. Warner, F., Foundations of Differentiable Manifolds and Lie Groups, Springer, 1983. (1983) Zbl0516.58001MR0722297
  28. Witten, E., 10.1007/BF01223371, Comm. Math. Phys. 117 (1988), 353–386. (1988) Zbl0656.53078MR0953828DOI10.1007/BF01223371

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.