-quasi-Frobenius Lie algebras
Archivum Mathematicum (2016)
- Volume: 052, Issue: 4, page 233-262
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topPham, David N.. "$\mathfrak {g}$-quasi-Frobenius Lie algebras." Archivum Mathematicum 052.4 (2016): 233-262. <http://eudml.org/doc/287569>.
@article{Pham2016,
abstract = {A Lie version of Turaev’s $\overline\{G\}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak \{g\}$-quasi-Frobenius Lie algebra for $\mathfrak \{g\}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak \{q\},\beta )$ together with a left $\mathfrak \{g\}$-module structure which acts on $\mathfrak \{q\}$ via derivations and for which $\beta $ is $\mathfrak \{g\}$-invariant. Geometrically, $\mathfrak \{g\}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak \{g\}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak \{g\}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf \{Rep\}(\mathfrak \{g\})$. If $\mathfrak \{g\}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline\{G\}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline\{G\}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf \{Rep\}(D(\mathfrak \{g\}))$, where $D(\mathfrak \{g\})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak \{g\}$ is a quasitriangular Lie bialgebra, then every $\mathfrak \{g\}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak \{g\})$-action which gives it the structure of a $D(\mathfrak \{g\})$-quasi-Frobenius Lie algebra.},
author = {Pham, David N.},
journal = {Archivum Mathematicum},
keywords = {symplectic Lie groups; quasi-Frobenius Lie algebras; Lie bialgebras; Drinfeld double; group actions},
language = {eng},
number = {4},
pages = {233-262},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {$\mathfrak \{g\}$-quasi-Frobenius Lie algebras},
url = {http://eudml.org/doc/287569},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Pham, David N.
TI - $\mathfrak {g}$-quasi-Frobenius Lie algebras
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 4
SP - 233
EP - 262
AB - A Lie version of Turaev’s $\overline{G}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak {g}$-quasi-Frobenius Lie algebra for $\mathfrak {g}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak {q},\beta )$ together with a left $\mathfrak {g}$-module structure which acts on $\mathfrak {q}$ via derivations and for which $\beta $ is $\mathfrak {g}$-invariant. Geometrically, $\mathfrak {g}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak {g}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak {g}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf {Rep}(\mathfrak {g})$. If $\mathfrak {g}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline{G}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline{G}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf {Rep}(D(\mathfrak {g}))$, where $D(\mathfrak {g})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak {g}$ is a quasitriangular Lie bialgebra, then every $\mathfrak {g}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak {g})$-action which gives it the structure of a $D(\mathfrak {g})$-quasi-Frobenius Lie algebra.
LA - eng
KW - symplectic Lie groups; quasi-Frobenius Lie algebras; Lie bialgebras; Drinfeld double; group actions
UR - http://eudml.org/doc/287569
ER -
References
top- Abrams, L., 10.1142/S0218216596000333, J. Knot Theory Ramifications 5 (1996), 569–587. (1996) Zbl0897.57015MR1414088DOI10.1142/S0218216596000333
- Agaoka, Y., 10.1090/S0002-9939-01-05828-2, Proc. Amer. Math. Soc. 129 (9) (2001), 2753–2762, (electronic). (2001) Zbl1021.53052MR1838799DOI10.1090/S0002-9939-01-05828-2
- Atiyah, M.F., 10.1007/BF02698547, Publ. Math. Inst. Hautes Études Sci. 68 (1988), 175–186. (1988) MR1001453DOI10.1007/BF02698547
- Baues, O., Cortés, V., Symplectic Lie Groups I–III, arXiv:1307.1629.
- Boyom, N., 10.1512/iumj.1993.42.42053, Indiana Univ. Math. J. 42 (4) (1993), 1149–1168. (1993) Zbl0846.58023MR1266088DOI10.1512/iumj.1993.42.42053
- Burde, D., 10.1515/FORUM.2006.038, Forum Math. 18 (5) (2006), 769–787. (2006) Zbl1206.17009MR2265899DOI10.1515/FORUM.2006.038
- Chari, V., Pressley, A., A Guide to Quantum Groups, Cambridge University Press, 1994. (1994) Zbl0839.17009MR1300632
- Chu, B., 10.1090/S0002-9947-1974-0342642-7, Trans. Amer. Math. Soc. 197 (1974), 145–159. (1974) MR0342642DOI10.1090/S0002-9947-1974-0342642-7
- Drinfeld, V.G., Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations, Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian). (1983) Zbl0526.58017MR0688240
- Etingof, P., Schiffman, O., Lectures on Quantum Groups, Lect. Math. Phys., Int. Press, 1998. (1998) MR1698405
- Golubitsky, M., Guillemin, V., 10.1007/978-1-4615-7904-5_3, Grad. Texts in Math., vol. 14, Springer, Berlin, 1973. (1973) Zbl0294.58004MR0341518DOI10.1007/978-1-4615-7904-5_3
- Goyvaerts, I., Vercruysse, J., A Note on the Categorification of Lie Algebras, Lie Theory and Its Applications in Physics, Springer Proceedings in Math. Stat., 2013, pp. 541–550. (2013) Zbl1280.17027MR3070680
- Guillemin, V., Pollack, A., Differential Topology, Prentice-Hall, 1974. (1974) Zbl0361.57001MR0348781
- Helgason, S., Differential Geometry, Lie groups, and Symmetric Spaces, Pure Appl. Math., 1978. (1978) Zbl0451.53038MR1834454
- Kaufmann, R., 10.1142/S0129167X03001831, Internat. J. Math. 14 (6) (2003), 573–617. (2003) Zbl1083.57037MR1997832DOI10.1142/S0129167X03001831
- Kaufmann, R., Pham, D., 10.1142/S0129167X09005431, Internat. J. Math. 20 (5) (2009), 623–657. (2009) Zbl1174.14048MR2526310DOI10.1142/S0129167X09005431
- Kosmann-Schwarzbach, Y., Poisson-Drinfel’d groups, Publ. Inst. Rech. Math. Av. 5 (12) (1987). (1987)
- Kosmann-Schwarzbach, Y., Lie Bialgebras, Poisson Lie groups and dressing transformations, Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170. (1997) Zbl1078.37517MR1636293
- Lee, J., Introduction to Smooth Manifolds, Springer-Verlag, New York Inc., 2003. (2003) MR1930091
- Lu, J., Weinstein, A., 10.4310/jdg/1214444324, J. Differential Geom. 31 (2) (1990), 501–526. (1990) Zbl0673.58018MR1037412DOI10.4310/jdg/1214444324
- Mikami, K., 10.1090/conm/179/01940, Contemp. Math. 179 (1994), 173–192. (1994) Zbl0820.58021MR1319608DOI10.1090/conm/179/01940
- Ooms, A., 10.1016/0021-8693(74)90154-9, J. Algebra 32 (1974), 488–500. (1974) Zbl0355.17014MR0387365DOI10.1016/0021-8693(74)90154-9
- Ooms, A., 10.1080/00927878008822445, Comm. Algebra 8 (1) (1980), 13–52. (1980) Zbl0421.17004MR0556091DOI10.1080/00927878008822445
- Semenov-Tian-Shansky, M.A., 10.1007/BF01076717, Funct. Anal. Appl. 17 (1983), 259–272. (1983) DOI10.1007/BF01076717
- Turaev, V., Homotopy field theory in dimension 2 and group-algebras, arXiv.org:math/9910010, (1999).
- Vinberg, E.B., A course in algebra, Graduate Studies in Math., vol. 56, AMS, 2003. (2003) Zbl1016.00003MR1974508
- Warner, F., Foundations of Differentiable Manifolds and Lie Groups, Springer, 1983. (1983) Zbl0516.58001MR0722297
- Witten, E., 10.1007/BF01223371, Comm. Math. Phys. 117 (1988), 353–386. (1988) Zbl0656.53078MR0953828DOI10.1007/BF01223371
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.