We present a weak parametrix of the operator of the CFIE equation. An interesting feature of this parametrix is that it is compatible with different discretization strategies and hence allows for the construction of efficient preconditioners dedicated to the CFIE. Furthermore, one shows that the underlying operator of the CFIE verifies an uniform discrete Inf-Sup condition which allows to predict an original convergence result of the numerical solution of the CFIE to the exact one.
On exhibe dans cette note une paramétrix (au sens faible) de l'opérateur
sous-jacent à l'équation CFIE de l'électromagnétisme. L'intérêt de cette
paramétrix est de se prêter à différentes stratégies de discrétisation
et ainsi de pouvoir être utilisée comme préconditionneur de la CFIE.
On montre aussi que l'opérateur sous-jacent à la CFIE satisfait une condition
Inf-Sup discrète uniforme, applicable aux espaces de discrétisation usuellement rencontrés
en électromagnétisme, et qui permet d'établir...
We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all frequencies....
We present an integral equation method for solving boundary value
problems of the Helmholtz equation in unbounded domains. The
method relies on the factorisation of one of the
Calderón projectors by an operator approximating the exterior
admittance (Dirichlet to Neumann) operator of the scattering
obstacle. We show how the pseudo-differential calculus allows us
to construct such approximations and that this yields integral
equations without internal resonances and being well-conditioned
at all...
Download Results (CSV)