The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present a transformation for stochastic matrices and analyze the effects of using it in stochastic comparison with the strong stochastic (st) order. We show that unless the given stochastic matrix is row diagonally dominant, the transformed matrix provides better st bounds on the steady state probability distribution.
We present a transformation for stochastic matrices and analyze the
effects of using it in stochastic comparison with the strong stochastic
(st) order. We show that unless the given stochastic matrix is row diagonally
dominant, the transformed matrix provides better
st bounds on the steady state probability distribution.
Download Results (CSV)