The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On total restrained domination in graphs

De-xiang MaXue-Gang ChenLiang Sun — 2005

Czechoslovak Mathematical Journal

In this paper we initiate the study of total restrained domination in graphs. Let G = ( V , E ) be a graph. A total restrained dominating set is a set S V where every vertex in V - S is adjacent to a vertex in S as well as to another vertex in V - S , and every vertex in S is adjacent to another vertex in S . The total restrained domination number of G , denoted by γ r t ( G ) , is the smallest cardinality of a total restrained dominating set of G . First, some exact values and sharp bounds for γ r t ( G ) are given in Section 2. Then the Nordhaus-Gaddum-type...

Existence and iteration of positive solutions for a singular two-point boundary value problem with a p -Laplacian operator

De-xiang MaWeigao GeZhan-Ji Gui — 2007

Czechoslovak Mathematical Journal

In the paper, we obtain the existence of symmetric or monotone positive solutions and establish a corresponding iterative scheme for the equation ( φ p ( u ' ) ) ' + q ( t ) f ( u ) = 0 , 0 < t < 1 , where φ p ( s ) : = | s | p - 2 s , p > 1 , subject to nonlinear boundary condition. The main tool is the monotone iterative technique. Here, the coefficient q ( t ) may be singular at t = 0 , 1 .

A note on the independent domination number of subset graph

Xue-Gang ChenDe-xiang MaHua Ming XingLiang Sun — 2005

Czechoslovak Mathematical Journal

The independent domination number i ( G ) (independent number β ( G ) ) is the minimum (maximum) cardinality among all maximal independent sets of G . Haviland (1995) conjectured that any connected regular graph G of order n and degree δ 1 2 n satisfies i ( G ) 2 n 3 δ 1 2 δ . For 1 k l m , the subset graph S m ( k , l ) is the bipartite graph whose vertices are the k - and l -subsets of an m element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for i ( S m ( k , l ) ) and prove that...

Page 1

Download Results (CSV)