The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The cuspidal torsion packet on hyperelliptic Fermat quotients

David GrantDelphy Shaulis — 2004

Journal de Théorie des Nombres de Bordeaux

Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

Page 1

Download Results (CSV)