Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

The cuspidal torsion packet on hyperelliptic Fermat quotients

David GrantDelphy Shaulis — 2004

Journal de Théorie des Nombres de Bordeaux

Let 7 be a prime, C be the non-singular projective curve defined over by the affine model y ( 1 - y ) = x , the point of C at infinity on this model, J the Jacobian of C , and φ : C J the albanese embedding with as base point. Let ¯ be an algebraic closure of . Taking care of a case not covered in [], we show that φ ( C ) J tors ( ¯ ) consists only of the image under φ of the Weierstrass points of C and the points ( x , y ) = ( 0 , 0 ) and ( 0 , 1 ) , where J tors denotes the torsion points of J .

Page 1

Download Results (CSV)