The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Resolving sets of directed Cayley graphs for the direct product of cyclic groups

Demelash Ashagrie MengeshaTomáš Vetrík — 2019

Czechoslovak Mathematical Journal

A directed Cayley graph C ( Γ , X ) is specified by a group Γ and an identity-free generating set X for this group. Vertices of C ( Γ , X ) are elements of Γ and there is a directed edge from the vertex u to the vertex v in C ( Γ , X ) if and only if there is a generator x X such that u x = v . We study graphs C ( Γ , X ) for the direct product Z m × Z n of two cyclic groups Z m and Z n , and the generating set X = { ( 0 , 1 ) , ( 1 , 0 ) , ( 2 , 0 ) , , ( p , 0 ) } . We present resolving sets which yield upper bounds on the metric dimension of these graphs for p = 2 and 3 .

Page 1

Download Results (CSV)