The -curvature of homogeneous -metrics.
We construct a special class of fermionic Novikov superalgebras from linear functions. We show that they are Novikov superalgebras. Then we give a complete classification of them, among which there are some non-associative examples. This method leads to several new examples which have not been described in the literature.
A Lie algebra is called two step nilpotent if is not abelian and lies in the center of . Two step nilpotent Lie algebras are useful in the study of some geometric problems, such as commutative Riemannian manifolds, weakly symmetric Riemannian manifolds, homogeneous Einstein manifolds, etc. Moreover, the classification of two-step nilpotent Lie algebras has been an important problem in Lie theory. In this paper, we study two step nilpotent indecomposable Lie algebras of dimension over the...
We give a classification of pseudo-Riemannian weakly symmetric manifolds in dimensions and , based on the algebraic approach of such spaces through the notion of a pseudo-Riemannian weakly symmetric Lie algebra. We also study the general symmetry of reductive -dimensional pseudo-Riemannian weakly symmetric spaces and particularly prove that a -dimensional reductive -fold symmetric pseudo-Riemannian manifold must be globally symmetric.
Page 1