The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Cell-to-muscle homogenization. Application to a constitutive law for the myocardium

Denis CaillerieAyman MouradAnnie Raoult — 2003

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Cell-to-Muscle homogenization. Application to a constitutive law for the myocardium

Denis CaillerieAyman MouradAnnie Raoult — 2010

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice...

Page 1

Download Results (CSV)