Cell-to-muscle homogenization. Application to a constitutive law for the myocardium

Denis Caillerie; Ayman Mourad; Annie Raoult

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2003)

  • Volume: 37, Issue: 4, page 681-698
  • ISSN: 0764-583X

Abstract

top
We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice reference cell.

How to cite

top

Caillerie, Denis, Mourad, Ayman, and Raoult, Annie. "Cell-to-muscle homogenization. Application to a constitutive law for the myocardium." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 37.4 (2003): 681-698. <http://eudml.org/doc/245826>.

@article{Caillerie2003,
abstract = {We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice reference cell.},
author = {Caillerie, Denis, Mourad, Ayman, Raoult, Annie},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {myocardium; constitutive law; homogenization; large deformations; quasiperiodic discrete lattice; elastic bars; large displacement},
language = {eng},
number = {4},
pages = {681-698},
publisher = {EDP-Sciences},
title = {Cell-to-muscle homogenization. Application to a constitutive law for the myocardium},
url = {http://eudml.org/doc/245826},
volume = {37},
year = {2003},
}

TY - JOUR
AU - Caillerie, Denis
AU - Mourad, Ayman
AU - Raoult, Annie
TI - Cell-to-muscle homogenization. Application to a constitutive law for the myocardium
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2003
PB - EDP-Sciences
VL - 37
IS - 4
SP - 681
EP - 698
AB - We derive a constitutive law for the myocardium from the description of both the geometrical arrangement of cardiomyocytes and their individual mechanical behaviour. We model a set of cardiomyocytes by a quasiperiodic discrete lattice of elastic bars interacting by means of moments. We work in a large displacement framework and we use a discrete homogenization technique. The macroscopic constitutive law is obtained through the resolution of a nonlinear self-equilibrum system of the discrete lattice reference cell.
LA - eng
KW - myocardium; constitutive law; homogenization; large deformations; quasiperiodic discrete lattice; elastic bars; large displacement
UR - http://eudml.org/doc/245826
ER -

References

top
  1. [1] T. Arts, R.S. Reneman and P.C. Veenstra, A model of the mechanics of the left ventricle. Ann. Biomed. Engrg. 7 (1979) 299–318. 
  2. [2] A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). Zbl0404.35001MR503330
  3. [3] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  4. [4] M. Briane, Three models of non periodic fibrous materials obtained by homogenization. ESAIM: M2AN 27 (1993) 759–775. Zbl0795.92006
  5. [5] H. Cai, Loi de comportement en grandes déformations du muscle à fibres actives. Application à la mécanique du cœur humain et à sa croissance. Thèse de l’Université de Savoie (1998). 
  6. [6] D. Caillerie and B. Cambou, Les techniques de changement d’échelles dans les milieux granulaires, in Micromécanique des milieux granulaires. Hermès Sciences, Paris (2001). 
  7. [7] R.S. Chadwick, Mechanics of the left ventricle. Biophys. J. 112 (1982) 333–339. 
  8. [8] D. Chapelle, F. Clément, F. Génot, P. Le Tallec, M. Sorine and J.M. Urquiza, A Physiologically-Based Model for the Active Cardiac Muscle Contraction, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat and Nenonen Eds., LNCS 2230. Springer (2001) 128–133. Zbl1052.68824
  9. [9] P.G. Ciarlet, Mathematical Elasticity. Vol. 1: Three-Dimensional Elasticity. North-Holland, Amsterdam (1987). Zbl0648.73014MR936420
  10. [10] D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied Mathematical Science 136. Springer-Verlag, New York (1999). Zbl0929.35002MR1676922
  11. [11] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer-Verlag, New York (1993). Zbl0743.92007
  12. [12] M. Gurtin, An Introduction to Continuum Mechanics. Academic Press, San Diego (1981). Zbl0559.73001MR636255
  13. [13] P.S. Jouk, Y. Usson, G. Michalowicz and L. Grossi, Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat. Embryol. 202 (2000) 103–118. 
  14. [14] J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engrg. 112 (1990) 333–339. 
  15. [15] J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engrg. 112 (1990) 340–346. 
  16. [16] D.H.S. Lin and F.C.P. Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engrg. 120 (1998) 504–517. 
  17. [17] G. Moreau and D. Caillerie, Continuum modeling of lattice structures in large displacement. Applications to buckling analysis. Comput. & Structures 68 (1998) 181–189. Zbl0940.74034
  18. [18] A. Mourad, L. Biard, D. Caillerie, P.-S. Jouk, A. Raoult, N. Szafran and Y. Usson, Geometrical modelling of the fibre organization in the human left ventricle, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat, Nenonen Eds., LNCS 2230. Springer (2001) 32–38. Zbl1052.68917
  19. [19] M.P. Nash and P.J. Hunter, Computational mechanics of the heart. J. Elasticity 61 (2000) 113–141. Zbl1071.74659
  20. [20] C.S. Peskin, Fiber architecture of the left ventricular wall: An asymptotic analysis. Comm. Pure Appl. Math. XLII (1989) 79–113. Zbl0664.92005
  21. [21] F. Pradel, Homogénéisation des milieux continus et discrets périodiques orientés. Thèse de l’École Nationale des Ponts et Chaussées (1998). 
  22. [22] E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory, Monographs in Physics 127. Springer-Verlag, Berlin (1980). Zbl0432.70002MR578345
  23. [23] D.D. Streeter, Gross morphology and fiber geometry of the heart, in Handbook of Physiology. The cardiovascular system, R.M. Berne, N. Sperelakis and S.R. Geiger Eds., Am. Phys. Soc. Williams & Wilkins, Baltimore (1979). 
  24. [24] L.A. Taber and R. Perucchio, Modeling heart development. J. Elasticity 61 (2000) 165–197. Zbl0987.74049
  25. [25] H. Tollenaere and D. Caillerie, Continuous modeling of lattice structures by homogenization. Adv. Engrg. Software 29 (1998) 699–705. 
  26. [26] C. Truesdell, A First Course in Rational Continuum Mechanics. Academic Press, New York (1977). Zbl0866.73001MR559731
  27. [27] T.P. Usyk, R. Mazhari and A.D. McCulloch, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61 (2000) 143–165. Zbl0974.92002
  28. [28] K. Washizu, Variational Methods in Elasticity and Plasticity. 2nd ed., Pergamon Press (1975). Zbl0339.73035MR391680
  29. [29] F.C.P. Yin, R.K. Strumpf, P.H. Chew and S.L. Zeger, Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20 (1987) 577–589. 
  30. [30] M. Zile, M.K. Cowles, J.M. Buckley, K. Richardson, B.A. Cowles, C.F. Baicu, G. CooperIV abd V. Gharpuray, Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells. Am. J. Physiol. 274 (1998) H2188–2202. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.