Variational characterisation of Gibbs measures with Delaunay triangle interaction.
In this paper, we prove that the laws of interacting brownian particles are characterized as Gibbs fields on pathspace associated to an explicit class of hamiltonian functionals. More generally, we show that a large class of Gibbs fields on pathspace corresponds to brownian diffusions. Some applications to time reversal in the stationary and non stationary case are presented.
In this paper, we prove that the laws of interacting Brownian particles are characterized as Gibbs fields on pathspace associated to an explicit class of Hamiltonian functionals. More generally, we show that a large class of Gibbs fields on pathspace corresponds to Brownian diffusions. Some applications to time reversal in the stationary and non stationary case are presented.
Page 1