Three new heuristics for the Steiner problem in graphs.
We review results for the embedding of orthogonal partial Latin squares in orthogonal Latin squares, comparing and contrasting these with results for embedding partial Latin squares in Latin squares. We also present a new construction that uses the existence of a set of mutually orthogonal Latin squares of order to construct a set of mutually orthogonal Latin squares of order .
We define a proper triangulation to be a dissection of an integer sided equilateral triangle into smaller, integer sided equilateral triangles such that no point is the vertex of more than three of the smaller triangles. In this paper we establish necessary and sufficient conditions for a proper triangulation of a convex region to exist. Moreover we establish precisely when at least two such equilateral triangle dissections exist. We also provide necessary and sufficient conditions for some convex...
Page 1