The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

On the definition of the dual Lie coalgebra of a Lie algebra.

Bertin Diarra — 1995

Publicacions Matemàtiques

Let L be a Lie algebra over a field K. The dual Lie coalgebra Lº of L has been defined by W. Michaelis to be the sum of all good subspaces V of the dual space L* of L: V is good if m(V) ⊂ V ⊗ V, where m is the multiplication of L. We show that Lº = m(L* ⊗ L*) as in the associative case.

Page 1

Download Results (CSV)