The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition , we obtain error estimates in of order where is the degree of the local polynomials.
We present the convergence analysis of locally divergence-free discontinuous Galerkin methods
for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition
, we obtain error
estimates in
of order where is the degree of the local polynomials.
We consider the Euler equations for compressible fluids
in a nozzle whose cross-section is variable and may contain discontinuities.
We view these equations as a hyperbolic system in nonconservative form
and investigate weak solutions in the sense of Dal Maso, LeFloch and Murat [
(1995) 483–548].
Observing that the entropy equality has a fully conservative form,
we derive a minimum entropy principle satisfied by entropy solutions.
We then establish the stability of a class of numerical...
Download Results (CSV)