Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system

Nicolas Besse; Dietmar Kröner

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 6, page 1177-1202
  • ISSN: 0764-583X

Abstract

top
We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition Δ t h 4 / 3 , we obtain error estimates in L 2 of order 𝒪 ( Δ t 2 + h m + 1 / 2 ) where m is the degree of the local polynomials.

How to cite

top

Besse, Nicolas, and Kröner, Dietmar. "Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.6 (2005): 1177-1202. <http://eudml.org/doc/244753>.

@article{Besse2005,
abstract = {We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition $\Delta t\sim h^\{4/3\}$, we obtain error estimates in $L^2$ of order $\mathcal \{O\} (\Delta t^2 + h^\{m + 1/2\})$ where $m$ is the degree of the local polynomials.},
author = {Besse, Nicolas, Kröner, Dietmar},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {magnetohydrodynamics; discontinuous-Galerkin methods; convergence analysis; second-order Runge Kutta time discretization; CFL condition},
language = {eng},
number = {6},
pages = {1177-1202},
publisher = {EDP-Sciences},
title = {Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system},
url = {http://eudml.org/doc/244753},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Besse, Nicolas
AU - Kröner, Dietmar
TI - Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 6
SP - 1177
EP - 1202
AB - We present the convergence analysis of locally divergence-free discontinuous Galerkin methods for the induction equations which appear in the ideal magnetohydrodynamic system. When we use a second order Runge Kutta time discretization, under the CFL condition $\Delta t\sim h^{4/3}$, we obtain error estimates in $L^2$ of order $\mathcal {O} (\Delta t^2 + h^{m + 1/2})$ where $m$ is the degree of the local polynomials.
LA - eng
KW - magnetohydrodynamics; discontinuous-Galerkin methods; convergence analysis; second-order Runge Kutta time discretization; CFL condition
UR - http://eudml.org/doc/244753
ER -

References

top
  1. [1] S. Alinhac and P. Gérard, Opérateurs pseudo-différentiels et théorème de Nash-Moser, CNRS Éditions (1991). Zbl0791.47044MR1172111
  2. [2] G.A. Baker, W.N. Jureidini and O.A. Karakashian, A piecewise solenoidal vector fields and the stokes problem. SIAM J. Numer. Anal. 27 (1990) 1466-1485. Zbl0719.76047MR1080332
  3. [3] D.S. Balsara and D.S. Spicer, A piecewise solenoidal vector fields and the stokes problem. J. Comput. Phys. 149 (1999) 270–292. Zbl0936.76051
  4. [4] J.U. Brackbill and D.C. Barnes. The effect of nonzero · 𝐁 on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35 (1980) 426. Zbl0429.76079MR570347
  5. [5] P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysis, P.G. Ciarlet and J.-L. Lions, Eds., North-Holland (1991) 17–351. Zbl0875.65086
  6. [6] B. Cockburn, Discontinuous Galerkin methods for convection dominated problems, in High-order methods for computational physics, Springer, Berlin. Lect. Notes Comput. Sci. Eng. 9 (1999) 69–224. Zbl0937.76049
  7. [7] B. Cockburn, F. Li and C.-W. Shu, Locally divergence-free discontinuous Galerkin-methods for the Maxwell equations. J. Comput. Phys. 194 (2004) 588–610. Zbl1049.78019
  8. [8] M. Costabel, A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Method Appl. Sci. 12 (1990) 365–368. Zbl0699.35028
  9. [9] M. Costabel and M. Dauge, Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris Sér. I 327 849–854 (1998). Zbl0921.35169
  10. [10] W. Dai and P.R. Woodward, On the divergence-free condition and conservation laws in numerical simulations for supersonic magnetohydrodynamic flow. Astrophys. J. 494 (1998) 317. 
  11. [11] A. Dedner, F. Kemm, D. Kröner, C.-D. Munz, T. Schnitzer and M. Wesenberg, Hyperbolic Divergence cleaning for the MHD equations. J. Comput. Phys. 175 (2002) 645–673. Zbl1059.76040
  12. [12] C.R. Evans and J.F. Hawley, Simulation of magnetohydrodynamic flows, a constrained transport method. Astrophys. J. 332 (1988) 659. 
  13. [13] C. Foias and R. Temam, Remarques sur les équations de Navier-Stokes et les phénoménes successifs de bifurcation. Ann. Sci. Norm. Sup. Pisa Sér. IV 5 (1978) 29–63. Zbl0384.35047
  14. [14] K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. XI (1958) 333–418. Zbl0083.31802
  15. [15] V. Gilrault and P.-A. Raviart, Finite element methods for the Navier-Stokes equatons, Theory and algorithms. Springer Ser. Comput. Math. 5 (1986). Zbl0585.65077
  16. [16] O.A. Karakashian and W.N. Jureidini, A nonconforming finite element method for the stationary Navier-Stokes equations. SIAM J. Numer. Anal. 35 (1998) 93–120. Zbl0933.76047
  17. [17] F. Li, C.-W. Shu, Locally divergence-free discontinuous Galerkin methods for MHD equations. SIAM J. Sci. Comput. 27 (2005) 413–442. Zbl1123.76341
  18. [18] J.-L. Lions and J. Petree, Sur une classe d’espaces d’interpolation. Publ. I.H.E.S. 19 (1964) 5–68. Zbl0148.11403
  19. [19] J.C. Nédélec, Mixed finite element in 3 . Numer. Math. 35 (1980) 315–341. Zbl0419.65069
  20. [20] K.G. Powell, An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension), ICASE-Report 94-24 (NASA CR-194902), NASA Langley Research Center, Hampton, VA 23681-0001 (1994). 
  21. [21] P.-A. Raviart and J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite elements methods, in Proc. of the conference held in Rome, 10–12 Dec. 1975, A. Dold, B. Eckmann, Eds., Springer, Berlin, Heidelberg, New York. Lect. Notes Math. 606 (1977). Zbl0362.65089
  22. [22] G. Tóth, The · 𝐁 = 0 constraint in shock-capturing magnetohydrodynamics codes. J. Comput. Phys. 161 (2000) 605. Zbl0980.76051MR1764250
  23. [23] L. Ying, A second order explicit finite element scheme to multidimensional conservation laws and its convergence. Sci. China Ser. A 43 (2000) 945–957. Zbl0999.65105
  24. [24] Q. Zhang and C.-W. Shu, Error Estimates to smooth solutions of Runge-Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42 (2004) 641–666. Zbl1078.65080

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.