On certain harmonic measures on the unit disk
Let a,b ∈ z: 0<|z|<1 and let S(a,b) be the class of all univalent functions f that map the unit disk into {a,bwith f(0)=0. We study the problem of maximizing |f’(0)| among all f ∈ S(a,b). Using the method of extremal metric we show that there exists a unique extremal function which maps onto a simply connnected domain bounded by the union of the closures of the critical trajectories of a certain quadratic differential. If a<0
The α-harmonic measure is the hitting distribution of symmetric α-stable processes upon exiting an open set in ℝⁿ (0 < α < 2, n ≥ 2). It can also be defined in the context of Riesz potential theory and the fractional Laplacian. We prove some geometric estimates for α-harmonic measure.
It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.
It is well known that certain transformations decrease the capacity of a condenser. We prove equality statements for the condenser capacity inequalities under symmetrization and polarization without connectivity restrictions on the condenser and without regularity assumptions on the boundary of the condenser.
Page 1