The class of extended Pólya functions Ω = {φ: φ is a continuous real valued real function, φ(-t) = φ(t) ≤ φ(0) ∈ [0,1], lím φ(t) = c ∈ [0,1] and φ(|t|) is convex} is a convex set. Its extreme points are identified, and using Choquet's theorem it is shown that φ ∈ Ω has an integral representation of the form φ(|t|) = ∫
max{0, 1-|t|y} dG(y), where G is the distribution function of some random variable Y. As on the other hand max{0, 1-|t|y} is the characteristic function of an absolutely...
Starting from the random extension of the Cantor middle set in [0,1], by iteratively removing the central uniform spacing from the intervals remaining in the previous step, we define random Beta(p,1)-Cantor sets, and compute their Hausdorff dimension. Next we define a deterministic counterpart, by iteratively removing the expected value of the spacing defined by the appropriate Beta(p,1) order statistics. We investigate the reasons why the Hausdorff dimension of this deterministic fractal is greater...
Studentization and analysis of variance are simple in Gaussian families because X̅ and S² are independent random variables. We exploit the independence of the spacings in exponential populations with location λ and scale δ to develop simple ways of dealing with inference on the location parameter, namely by developing an analysis of scale in the homocedastic independent k-sample problem.
Download Results (CSV)