The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

The generalized Boardman homomorphisms

Dominique Arlettaz — 2004

Open Mathematics

This paper provides universal upper bounds for the exponent of the kernel and of the cokernel of the classical Boardman homomorphism b n: π n(X)→H n(H;ℤ), from the cohomotopy groups to the ordinary integral cohomology groups of a spectrum X, and of its various generalizations π n(X)→E n(X), F n(X)→(E∧F)n(X), F n(X)→H n(X;π 0 F) and F n(X)→H n+t(X;π t F) for other cohomology theories E *(−) and F *(−). These upper bounds do not depend on X and are given in terms of the exponents of the stable homotopy...

Algebraic K-theory of rings from a topological viewpoint.

Dominique Arlettaz — 2000

Publicacions Matemàtiques

Because of its strong interaction with almost every part of pure mathematics, algebraic K-theory has had a spectacular development since its origin in the late fifties. The objective of this paper is to provide the basic definitions of the algebraic K-theory of rings and an overview of the main classical theorems. Since the algebraic K-groups of a ring R are the homotopy groups of a topological space associated with the general linear group over R, it is obvious that many general results follow...

Postnikov invariants of H-spaces

Dominique ArlettazNicole Pointet-Tischler — 1999

Fundamenta Mathematicae

It is known that the order of all Postnikov k-invariants of an H-space of finite type is finite. This paper establishes the finiteness of the order of the k-invariants k m + 1 ( X ) of X in dimensions m ≤ 2n if X is an (n-1)-connected H-space which is not necessarily of finite type (n ≥ 1). Similar results hold more generally for higher k-invariants if X is an iterated loop space. Moreover, we provide in all cases explicit universal upper bounds for the order of the k-invariants of X.

Page 1

Download Results (CSV)