The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

Completely dissociative groupoids

Milton BraittDavid HobbyDonald Silberger — 2012

Mathematica Bohemica

In a groupoid, consider arbitrarily parenthesized expressions on the k variables x 0 , x 1 , x k - 1 where each x i appears once and all variables appear in order of their indices. We call these expressions k -ary formal products, and denote the set containing all of them by F σ ( k ) . If u , v F σ ( k ) are distinct, the statement that u and v are equal for all values of x 0 , x 1 , x k - 1 is a generalized associative law. Among other results, we show that many small groupoids are completely dissociative, meaning that no generalized associative law holds...

Antiassociative groupoids

Milton BraittDavid HobbyDonald Silberger — 2017

Mathematica Bohemica

Given a groupoid G , , and k 3 , we say that G is antiassociative if an only if for all x 1 , x 2 , x 3 G , ( x 1 x 2 ) x 3 and x 1 ( x 2 x 3 ) are never equal. Generalizing this, G , is k -antiassociative if and only if for all x 1 , x 2 , ... , x k G , any two distinct expressions made by putting parentheses in x 1 x 2 x 3 x k are never equal. We prove that for every k 3 , there exist finite groupoids that are k -antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal.

Page 1

Download Results (CSV)