The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

Average convergence rate of the first return time

Geon ChoeDong Kim — 2000

Colloquium Mathematicae

The convergence rate of the expectation of the logarithm of the first return time R n , after being properly normalized, is investigated for ergodic Markov chains. I. Kontoyiannis showed that for any β > 0 we have l o g [ R n ( x ) P n ( x ) ] = o ( n β ) a.s. for aperiodic cases and A. J. Wyner proved that for any ε >0 we have - ( 1 + ε ) l o g n l o g [ R n ( x ) P n ( x ) ] l o g l o g n eventually, a.s., where P n ( x ) is the probability of the initial n-block in x. In this paper we prove that E [ l o g R ( L , S ) - ( L - 1 ) h ] converges to a constant depending only on the process where R ( L , S ) is the modified first return time with...

On Kurzweil's 0-1 law in inhomogeneous Diophantine approximation

Michael FuchsDong Han Kim — 2016

Acta Arithmetica

We give a necessary and sufficient condition such that, for almost all s ∈ ℝ, ||nθ - s|| < ψ(n) for infinitely many n ∈ ℕ, where θ is fixed and ψ(n) is a positive, non-increasing sequence. This can be seen as a dual result to classical theorems of Khintchine and Szüsz which dealt with the situation where s is fixed and θ is random. Moreover, our result contains several earlier ones as special cases: two old theorems of Kurzweil, a theorem of Tseng and a recent...

Circular cone and its Gauss map

Miekyung ChoiDong-Soo KimYoung Ho KimDae Won Yoon — 2012

Colloquium Mathematicae

The family of cones is one of typical models of non-cylindrical ruled surfaces. Among them, the circular cones are unique in the sense that their Gauss map satisfies a partial differential equation similar, though not identical, to one characterizing the so-called 1-type submanifolds. Specifically, for the Gauss map G of a circular cone, one has ΔG = f(G+C), where Δ is the Laplacian operator, f is a non-zero function and C is a constant vector. We prove that circular cones are characterized by being...

Page 1

Download Results (CSV)