Average convergence rate of the first return time
Colloquium Mathematicae (2000)
- Volume: 84/85, Issue: 1, page 159-171
- ISSN: 0010-1354
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Dembo and I. Kontoyiannis, The asymptotics of waiting times between stationary processes, allowing distortion, Ann. Appl. Probab. 9 (1999), 413-429. Zbl0940.60033
- [2] M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002-1010. Zbl0032.41802
- [3] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer, New York, 1976. Zbl0328.60035
- [4] I. Kontoyiannis, Asymptotic recurrence and waiting times for stationary processes, J. Theoret. Probab. 11 (1998), 795-811. Zbl0912.60051
- [5] I. Kontoyiannis, P. H. Algoet, Yu. M. Suhov and A. J. Wyner, Nonparametric entropy estimation for stationary processes and random fields, with applications to English text, IEEE Trans. Inform. Theory 44 (1998), 1319-1327. Zbl1026.94516
- [6] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding, Cambridge Univ. Press, 1995. Zbl1106.37301
- [7] G. Louchard and W. Szpankowski, On the average redundancy rate of the Lempel-Ziv code, IEEE Trans. Inform. Theory 43 (1997), 2-8. Zbl0873.94009
- [8] U. Maurer, A universal statistical test for random bit generators, J. Cryptology 5 (1992), 89-105. Zbl0790.94014
- [9] D. Ornstein and B. Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory 39 (1993), 78-83. Zbl0764.94003
- [10] C. Shannon, The mathematical theory of communication, Bell Sys. Tech. J. 27 (1948), 379-423 and 623-656. Zbl1154.94303
- [11] P. C. Shields, The Ergodic Theory of Discrete Sample Paths, Grad. Stud. Math. 13 Amer. Math. Soc., 1996.
- [12] W. Szpankowski, Asymptotic properties of data compression and suffix trees, IEEE Trans. Inform. Theory 39 (1993), 1647-1659. Zbl0802.94007
- [13] F. M. J. Willems, Universal data compression and repetition times, ibid. 35 (1989), 54-58. Zbl0671.94005
- [14] A. J. Wyner, Strong matching theorems and applications to data compression and statistics, Ph.D. thesis, Stanford Univ., 1993.
- [15] A. J. Wyner, More on recurrence and waiting times, Ann. Appl. Probab., to appear. Zbl0955.60031
- [16] A. J. Wyner and J. Ziv, Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory 35 (1989), 1250-1258. Zbl0695.94003
- [17] J. Ziv and A. Lempel, A universal algorithm for sequential data compression, ibid. 23 (1977), 337-343. Zbl0379.94010
- [18] J. Ziv and A. Lempel, Compression of individual sequences via variable rate coding, ibid. 24 (1978), 530-536. Zbl0392.94004