Let be an algebraic family of Drinfeld modules defined over a field K of characteristic p, and let a,b ∈ K[λ]. Assume that neither a(λ) nor b(λ) is a torsion point for for all λ. If there exist infinitely many λ ∈ K̅ such that both a(λ) and b(λ) are torsion points for , then we show that for each λ ∈ K̅, a(λ) is torsion for if and only if b(λ) is torsion for . In the case a,b ∈ K, we prove in addition that a and b must be -linearly dependent.
The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang...
Download Results (CSV)