Periodic solutions for a second-order neutral differential equation with variable parameter and multiple deviating arguments.
The problems related to periodic solutions of cellular neural networks (CNNs) involving operator and proportional delays are considered. We shall present Topology degree theory and differential inequality technique for obtaining the existence of periodic solution to the considered neural networks. Furthermore, Laypunov functional method is used for studying global asymptotic stability of periodic solutions to the above system.
By using the coincidence degree theory, we study a type of -Laplacian neutral Rayleigh functional differential equation with deviating argument to establish new results on the existence of -periodic solutions.
By using linear matrix inequality (LMI) approach and Lyapunov functional method, we obtain some new sufficient conditions ensuring global asymptotic stability and global exponential stability of a generalized neutral-type impulsive neural networks with delays. A simulation example is provided to demonstrate the usefulness of the main results obtained. The main contribution in this paper is that a new neutral-type impulsive neural networks with variable delays is studied by constructing a novel Lyapunov...
Page 1