The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

Quelques propriétés arithmétiques des points de 3 -division de la jacobienne de y 2 = x 5 - 1

J. BoxallE. Bavencoffe — 1992

Journal de théorie des nombres de Bordeaux

Soit C la courbe projective lisse et irréductible, définie sur Q , et dont un modèle affine est donné par y 2 = x 5 - 1 . On désigne par l’unique point de C qui n’est pas contenu dans cette partie affine. Soit J la jacobienne de C et soit φ : C 2 J le morphisme associant à chaque couple ( ξ , η ) de points de C la classe du diviseur [ ξ ] + [ η ] - 2 [ ] dans Pic 0 C . Soient u , v , f les trois fonctions rationnelles sur J définies par u φ ( ξ , η ) = x ( ξ ) + x ( η ) , v φ ( ξ , η ) = x ( ξ ) x ( η ) , f = - u + v + 1 Le but de cet article est de montrer que pour tout point P de 3 -division non nul de J , u ( P ) et v ( P ) sont...

Page 1

Download Results (CSV)