In this paper we extend the notion of I⁰-continuity and uniform I⁰-continuity from [2] to set-valued operators. Using these properties, we prove some results on continuous dependence of the fixed points set for families of contractive type set-valued operators.
This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.
This paper concerns numerical methods for two-phase flows.
The governing equations are the compressible 2-velocity,
2-pressure flow model. Pressure and velocity relaxation
are included as source terms. Results obtained by a
Godunov-type central scheme and a Roe-type upwind scheme
are presented. Issues of preservation of pressure equilibrium,
and positivity of the partial densities are addressed.
Download Results (CSV)