Compressible two-phase flows by central and upwind schemes
Smadar Karni; Eduard Kirr; Alexander Kurganov; Guergana Petrova
- Volume: 38, Issue: 3, page 477-493
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topKarni, Smadar, et al. "Compressible two-phase flows by central and upwind schemes." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 38.3 (2004): 477-493. <http://eudml.org/doc/245125>.
@article{Karni2004,
abstract = {This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.},
author = {Karni, Smadar, Kirr, Eduard, Kurganov, Alexander, Petrova, Guergana},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Euler equations; two-phase flows; numerical methods; central schemes; upwind schemes; Godunov scheme; Roe scheme; pressure equilibrium},
language = {eng},
number = {3},
pages = {477-493},
publisher = {EDP-Sciences},
title = {Compressible two-phase flows by central and upwind schemes},
url = {http://eudml.org/doc/245125},
volume = {38},
year = {2004},
}
TY - JOUR
AU - Karni, Smadar
AU - Kirr, Eduard
AU - Kurganov, Alexander
AU - Petrova, Guergana
TI - Compressible two-phase flows by central and upwind schemes
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2004
PB - EDP-Sciences
VL - 38
IS - 3
SP - 477
EP - 493
AB - This paper concerns numerical methods for two-phase flows. The governing equations are the compressible 2-velocity, 2-pressure flow model. Pressure and velocity relaxation are included as source terms. Results obtained by a Godunov-type central scheme and a Roe-type upwind scheme are presented. Issues of preservation of pressure equilibrium, and positivity of the partial densities are addressed.
LA - eng
KW - Euler equations; two-phase flows; numerical methods; central schemes; upwind schemes; Godunov scheme; Roe scheme; pressure equilibrium
UR - http://eudml.org/doc/245125
ER -
References
top- [1] R. Abgrall and S. Karni, Computations of compressible multifluids. J. Comput. Phys. 169 (2001) 594–623. Zbl1033.76029
- [2] R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase flow mixtures. J. Comput. Phys. 186 (2003) 361–396. Zbl1072.76594
- [3] F. Coquel, K. El Amine, E. Godlewski, B. Perthame and P. Rascle, A numerical method using upwind schemes for the resolution of two-phase flows. J. Comput. Phys. 136 (1997) 272–288. Zbl0893.76052
- [4] D.A. Drew, Mathematical modelling of tow-phase flow. Ann. Rev. Fluid Mech. 15 (1983) 261–291. Zbl0569.76104
- [5] B. Einfeldt, C.-D. Munz, P.L. Roe and B. Sjogreen, On Godunov-type methods near low densities. J. Comput. Phys. 92 (1991) 273–295. Zbl0709.76102
- [6] A. Harten and S. Osher, Uniformly high-order accurate nonoscillatory schemes. I. SIAM J. Numer. Anal. 24 (1987) 279–309. Zbl0627.65102
- [7] S. Karni, Multi-component flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112 (1994) 31–43. Zbl0811.76044
- [8] A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. Zbl1137.65398
- [9] A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 23 (2001) 707–740. Zbl0998.65091
- [10] A. Kurganov and G. Petrova, Central schemes and contact discontinuities. ESAIM: M2AN 34 (2000) 1259–1275. Zbl0972.65055
- [11] B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method. J. Comput. Phys. 32 (1979) 101–136. Zbl0939.76063
- [12] H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. Zbl0697.65068
- [13] V.H. Ransom, Numerical benchmark tests, G.F. Hewitt, J.M. Delhay and N. Zuber Eds., Hemisphere, Washington, DC Multiphase Science and Technology 3 (1987).
- [14] P.-A. Raviart and L. Sainsaulieu, Nonconservative hyperbolic systems and two-phase flows, International Conference on Differential Equations (Barcelona, 1991) World Sci. Publishing, River Edge, NJ 1, 2 (1993) 225–233. Zbl0938.35575
- [15] P.-A. Raviart and L. Sainsaulieu, A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem. Math. Models Methods Appl. Sci. 5 (1995) 297–333. Zbl0837.76089
- [16] P.L. Roe, Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43 (1981) 357–372. Zbl0474.65066
- [17] P.L. Roe, Fluctuations and signals - A framework for numerical evolution problems, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (1982) 219–257. Zbl0569.76072
- [18] P.L. Roe and J. Pike, Efficient construction and utilisation of approximate Riemann solutions, in Computing methods in applied sciences and engineering, VI (Versailles, 1983) North-Holland, Amsterdam (1984) 499–518. Zbl0558.76001
- [19] L. Sainsaulieu, Finite volume approximations of two-phase fluid flows based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1–28. Zbl0834.76070
- [20] R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. Zbl0937.76053
- [21] H.B. Stewart and B. Wendroff, Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363–409. Zbl0596.76103
- [22] I. Toumi and A. Kumbaro, An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286–300. Zbl0847.76056
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.