The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Isospectral deformations of closed riemannian manifolds with different scalar curvature

Carolyn S. GordonRuth GornetDorothee SchuethDavid L. WebbEdward N. Wilson — 1998

Annales de l'institut Fourier

We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on S n × T m , where T m is a torus of dimension m 2 and S n is a sphere of dimension n 4 . These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.

Page 1

Download Results (CSV)