Isospectral deformations of closed riemannian manifolds with different scalar curvature
We construct the first examples of continuous families of isospectral Riemannian metrics that are not locally isometric on closed manifolds , more precisely, on , where is a torus of dimension and is a sphere of dimension . These metrics are not locally homogeneous; in particular, the scalar curvature of each metric is nonconstant. For some of the deformations, the maximum scalar curvature changes during the deformation.