The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 13 of 13

Showing per page

Order by Relevance | Title | Year of publication

Une généralisation du problème de Cauchy

Einar Hille — 1952

Annales de l'institut Fourier

L’objet de la note est l’étude d’un problème de Cauchy pour l’équation fonctionnelle : y ( n ) ( t ) = U n [ y ( t ) ] , t < 0 , avec y ( k ) ( t ) y k , k = 0 , 1 , ... , n - 1 , quand l 0 . On suppose que la solution et les données { y k } sont des éléments d’un espace ( B ) , U est un opérateur linéaire de domaine D [ U ] X , les dérivées et les limites sont prises au sens fort. Une solution est du type normal si t - 1 log y ( n - 1 ) ( t ) reste borné quant t . On montre que le problème admet au plus une solution du type normal pour n’importe quelles données dans X , si U est clos et ses valeurs propres ne sont pas...

Page 1

Download Results (CSV)