The search session has expired. Please query the service again.

Currently displaying 1 – 17 of 17

Showing per page

Order by Relevance | Title | Year of publication

Cantor-Schroeder-Bernstein quadruples for Banach spaces

Elói Medina Galego — 2008

Colloquium Mathematicae

Two Banach spaces X and Y are symmetrically complemented in each other if there exists a supplement of Y in X which is isomorphic to some supplement of X in Y. In 1996, W. T. Gowers solved the Schroeder-Bernstein (or Cantor-Bernstein) Problem for Banach spaces by constructing two non-isomorphic Banach spaces which are symmetrically complemented in each other. In this paper, we show how to modify such a symmetry in order to ensure that X is isomorphic to Y. To do this, first we introduce the notion...

Banach spaces widely complemented in each other

Elói Medina Galego — 2013

Colloquium Mathematicae

Suppose that X and Y are Banach spaces that embed complementably into each other. Are X and Y necessarily isomorphic? In this generality, the answer is no, as proved by W. T. Gowers in 1996. However, if X contains a complemented copy of its square X², then X is isomorphic to Y whenever there exists p ∈ ℕ such that X p can be decomposed into a direct sum of X p - 1 and Y. Motivated by this fact, we introduce the concept of (p,q,r) widely complemented subspaces in Banach spaces, where p,q and r ∈ ℕ. Then,...

The Schroeder-Bernstein index for Banach spaces

Elói Medina Galego — 2004

Studia Mathematica

In relation to some Banach spaces recently constructed by W. T. Gowers and B. Maurey, we introduce the notion of Schroeder-Bernstein index SBi(X) for every Banach space X. This index is related to complemented subspaces of X which contain some complemented copy of X. Then we establish the existence of a Banach space E which is not isomorphic to Eⁿ for every n ∈ ℕ, n ≥ 2, but has a complemented subspace isomorphic to E². In particular, SBi(E) is uncountable. The construction of E follows the approach...

A note on extensions of Pełczyński's decomposition method in Banach spaces

Elói Medina Galego — 2007

Studia Mathematica

Let X,Y,A and B be Banach spaces such that X is isomorphic to Y ⊕ A and Y is isomorphic to X ⊕ B. In 1996, W. T. Gowers solved the Schroeder-Bernstein problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In the present paper, we give a necessary and sufficient condition on sextuples (p,q,r,s,u,v) in ℕ with p + q ≥ 2, r + s ≥ 1 and u, v ∈ ℕ* for X to be isomorphic to Y whenever these spaces satisfy the following decomposition scheme: ⎧ X u X p Y q , ⎨ ⎩ Y v A r B s . Namely, Ω = (p-u)(s-r-v)...

On isomorphism classes of C ( 2 [ 0 , α ] ) spaces

Elói Medina Galego — 2009

Fundamenta Mathematicae

We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces 2 [ 0 , α ] , the topological sums of Cantor cubes 2 , with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of C ( 2 [ 0 , α ] ) spaces with ≥ ℵ₀ and α ≥ ω₁ are the trivial ones. This result leads to some elementary questions on large cardinals.

Schroeder-Bernstein Quintuples for Banach Spaces

Elói Medina Galego — 2006

Bulletin of the Polish Academy of Sciences. Mathematics

Let X and Y be two Banach spaces, each isomorphic to a complemented subspace of the other. In 1996, W. T. Gowers solved the Schroeder-Bernstein Problem for Banach spaces by showing that X is not necessarily isomorphic to Y. In this paper, we obtain necessary and sufficient conditions on the quintuples (p,q,r,s,t) in ℕ for X to be isomorphic to Y whenever ⎧ X X p Y q , ⎨ ⎩ Y t X r Y s . Such quintuples are called Schroeder-Bernstein quintuples for Banach spaces and they yield a unification of the known decomposition...

An Isomorphic Classification of C ( 2 × [ 0 , α ] ) Spaces

Elói Medina Galego — 2009

Bulletin of the Polish Academy of Sciences. Mathematics

We present an extension of the classical isomorphic classification of the Banach spaces C([0,α]) of all real continuous functions defined on the nondenumerable intervals of ordinals [0,α]. As an application, we establish the isomorphic classification of the Banach spaces C ( 2 × [ 0 , α ] ) of all real continuous functions defined on the compact spaces 2 × [ 0 , α ] , the topological product of the Cantor cubes 2 with smaller than the first sequential cardinal, and intervals of ordinal numbers [0,α]. Consequently, it is relatively...

How far is C(ω) from the other C(K) spaces?

Leandro CandidoElói Medina Galego — 2013

Studia Mathematica

Let us denote by C(α) the classical Banach space C(K) when K is the interval of ordinals [1,α] endowed with the order topology. In the present paper, we give an answer to a 1960 Bessaga and Pełczyński question by providing tight bounds for the Banach-Mazur distance between C(ω) and any other C(K) space which is isomorphic to it. More precisely, we obtain lower bounds L(n,k) and upper bounds U(n,k) on d(C(ω),C(ωⁿk)) such that U(n,k) - L(n,k) < 2 for all 1 ≤ n, k < ω.

Geometry of the Banach spaces C(βℕ × K,X) for compact metric spaces K

Dale E. AlspachElói Medina Galego — 2011

Studia Mathematica

A classical result of Cembranos and Freniche states that the C(K,X) space contains a complemented copy of c₀ whenever K is an infinite compact Hausdorff space and X is an infinite-dimensional Banach space. This paper takes this result as a starting point and begins a study of conditions under which the spaces C(α), α < ω₁, are quotients of or complemented in C(K,X). In contrast to the c₀ result, we prove that if C(βℕ ×[1,ω],X) contains a complemented copy of C ( ω ω ) then X contains a copy of c₀. Moreover,...

The classical subspaces of the projective tensor products of p and C(α) spaces, α < ω₁

Elói Medina GalegoChristian Samuel — 2013

Studia Mathematica

We completely determine the q and C(K) spaces which are isomorphic to a subspace of p ̂ π C ( α ) , the projective tensor product of the classical p space, 1 ≤ p < ∞, and the space C(α) of all scalar valued continuous functions defined on the interval of ordinal numbers [1,α], α < ω₁. In order to do this, we extend a result of A. Tong concerning diagonal block matrices representing operators from p to ℓ₁, 1 ≤ p < ∞. The first main theorem is an extension of a result of E. Oja and states that the only...

Embeddings of C(K) spaces into C(S,X) spaces with distortion strictly less than 3

Leandro CandidoElói Medina Galego — 2013

Fundamenta Mathematicae

In the spirit of the classical Banach-Stone theorem, we prove that if K and S are intervals of ordinals and X is a Banach space having non-trivial cotype, then the existence of an isomorphism T from C(K, X) onto C(S,X) with distortion | | T | | | | T - 1 | | strictly less than 3 implies that some finite topological sum of K is homeomorphic to some finite topological sum of S. Moreover, if Xⁿ contains no subspace isomorphic to X n + 1 for every n ∈ ℕ, then K is homeomorphic to S. In other words, we obtain a vector-valued Banach-Stone...

A quasi-dichotomy for C(α,X) spaces, α < ω₁

Elói Medina GalegoMaurício Zahn — 2015

Colloquium Mathematicae

We prove the following quasi-dichotomy involving the Banach spaces C(α,X) of all X-valued continuous functions defined on the interval [0,α] of ordinals and endowed with the supremum norm. Suppose that X and Y are arbitrary Banach spaces of finite cotype. Then at least one of the following statements is true. (1) There exists a finite ordinal n such that either C(n,X) contains a copy of Y, or C(n,Y) contains a copy of X. (2) For any infinite countable...

How far is C₀(Γ,X) with Γ discrete from C₀(K,X) spaces?

Leandro CandidoElói Medina Galego — 2012

Fundamenta Mathematicae

For a locally compact Hausdorff space K and a Banach space X we denote by C₀(K,X) the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Γ an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between C₀(Γ,X) and C₀(K,X) is greater than or equal to 2n + 1. We also show that the Banach-Mazur...

Page 1

Download Results (CSV)