The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

On generalized d'Alembert functional equation.

Mohamed AkkouchiAllal BakaliBelaid BouikhaleneEl Houcien El Qorachi — 2006

Extracta Mathematicae

Let G be a locally compact group. Let σ be a continuous involution of G and let μ be a complex bounded measure. In this paper we study the generalized d'Alembert functional equation D(μ)    ∫G f(xty)dμ(t) + ∫G f(xtσ(y))dμ(t) = 2f(x)f(y) x, y ∈ G; where f: G → C to be determined is a measurable and essentially bounded function.

Page 1

Download Results (CSV)