The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Preservation of exponential stability for equations with several delays

Leonid BerezanskyElena Braverman — 2011

Mathematica Bohemica

We consider preservation of exponential stability for the scalar nonoscillatory linear equation with several delays x ˙ ( t ) + k = 1 m a k ( t ) x ( h k ( t ) ) = 0 , a k ( t ) 0 under the addition of new terms and a delay perturbation. We assume that the original equation has a positive fundamental function; our method is based on Bohl-Perron type theorems. Explicit stability conditions are obtained.

On stability of linear neutral differential equations with variable delays

Leonid BerezanskyElena Braverman — 2019

Czechoslovak Mathematical Journal

We present a review of known stability tests and new explicit exponential stability conditions for the linear scalar neutral equation with two delays x ˙ ( t ) - a ( t ) x ˙ ( g ( t ) ) + b ( t ) x ( h ( t ) ) = 0 , where | a ( t ) | < 1 , b ( t ) 0 , h ( t ) t , g ( t ) t , and for its generalizations, including equations with more than two delays, integro-differential equations and equations with a distributed delay.

Page 1

Download Results (CSV)