In this work, we investigate the Perfectly Matched Layers (PML) introduced by Bérenger [3] for designing efficient numerical absorbing layers in electromagnetism. We make a mathematical analysis of this model, first via a modal analysis with standard Fourier techniques, then via energy techniques. We obtain uniform in time stability results (that make precise some results known in the literature) and state some energy decay results that illustrate the absorbing properties of the model. This last...
In this work, we investigate the Perfectly
Matched Layers (PML)
introduced by Bérenger [3] for designing
efficient numerical absorbing
layers in electromagnetism.
We make a mathematical analysis of this model, first a modal
analysis with standard Fourier techniques, then energy
techniques. We obtain uniform in time stability results (that make
precise some results known in the literature) and state some energy
decay results that illustrate the absorbing properties of the
model. This last technique...
The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly...
The problem of modeling acoustic waves scattered by an object with
Neumann boundary condition is considered. The boundary condition is
taken into account by means of the fictitious domain method, yielding
a first order in time mixed variational formulation for the
problem. The resulting system is discretized
with two families of mixed finite elements that are compatible with
mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always...
Download Results (CSV)