Large deviations for transient random walks in random environment on a Galton–Watson tree
Consider a random walk in random environment on a supercritical Galton–Watson tree, and let be the hitting time of generation . The paper presents a large deviation principle for /, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.