The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a totally real algebraic number field whose ring of integers is a principal ideal domain. Let be a totally definite ternary quadratic form with coefficients in . We shall study representations of totally positive elements by . We prove a quantitative formula relating the number of representations of by different classes in the genus of to the class number of , where is a constant depending only on . We give an algebraic proof of a classical result of H. Maass on representations...
Download Results (CSV)