The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 14 of 14

Showing per page

Order by Relevance | Title | Year of publication

Weighted Fréchet spaces of holomorphic functions

Elke Wolf — 2006

Studia Mathematica

This article deals with weighted Fréchet spaces of holomorphic functions which are defined as countable intersections of weighted Banach spaces of type H . We characterize when these Fréchet spaces are Schwartz, Montel or reflexive. The quasinormability is also analyzed. In the latter case more restrictive assumptions are needed to obtain a full characterization.

Weighted composition operators between weighted Banach spaces of holomorphic functions and weighted Bloch type space

Elke Wolf — 2009

Annales Polonici Mathematici

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Banach spaces of holomorphic functions and weighted Bloch type spaces. Under some assumptions on the weights we give a necessary as well as a sufficient condition for such an operator to be bounded resp. compact.

On weighted composition operators acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces

Elke Wolf — 2011

Annales Polonici Mathematici

Let ϕ: → and ψ: → ℂ be analytic maps. They induce a weighted composition operator ψ C ϕ acting between weighted Bergman spaces of infinite order and weighted Bloch type spaces. Under some assumptions on the weights we give a characterization for such an operator to be bounded in terms of the weights involved as well as the functions ψ and ϕ

Weighted composition followed by differentiation between weighted Banach spaces of holomorphic functions

Wolf, Elke — 2011

Serdica Mathematical Journal

2010 Mathematics Subject Classification: 47B33, 47B38. Let f be an analytic self-map of the open unit disk D in the complex plane and y be an analytic map on D. Such maps induce a weighted composition operator followed by differentiation DCf, y acting between weighted Banach spaces of holomorphic functions. We characterize boundedness and compactness of such operators in terms of the involved weights as well as the functions f and y.

Page 1

Download Results (CSV)