Boundary value problems for linear quasi-elliptic -type operators with variable coefficients are studied in the unbounded region of , definited by , ; means a perturbation whose behaviour is assigned at infinity and in the angular points of the domain. It is proved that the operator related to the problem has closed range and finite dimensional null space. The study is developed within a new class of dissimetric Sobolev weighted spaces.
In questa nota presentiamo a parte iniziale della vastissima opera del fisico matematico N.N. Bogolyubov relativa allo studio dei problemi non convessi del Calcolo delle Variazioni. Il suo contributo innanzitutto ha un valore storico: infatti è il primo autore che studia, con tecniche completamente originali, problemi a cui non sipossono applicare i Metodi diretti del Calcolo della Variazioni. In ragione poi del loro intrinseco valore scientifico, ci è sembrato interessante presentare, anche con...
We prove Lipschitz continuity for local minimizers of integral functionals of the Calculus of Variations in the vectorial case, where the energy density depends explicitly on the space variables and has general growth with respect to the gradient. One of the models is
with a convex function with general growth (also exponential behaviour is allowed).
In the present paper the authors prove a weak law of large numbers for multidimensional processes of random elements by means of the random weighting. The results obtained generalize those of Padgett and Taylor.
We prove Lipschitz continuity for local
minimizers of integral functionals of the Calculus of Variations
in the vectorial case, where the energy density depends explicitly
on the space variables and has general growth with respect to the
gradient. One of the models is
with a convex function with general growth (also exponential behaviour
is allowed).
Download Results (CSV)