An element of a commutative ring with identity element is called a if there is a in such that . A point of a (Tychonoff) space is called a - if each in the ring of continuous real-valued functions is constant on a neighborhood of . It is well-known that the ring is von Neumann regular ring iff each of its elements is a von Neumann regular element; in which case is called a -. If all but at most one point of is a -point, then is called an . In earlier work it was shown...
In 1950 in volume 1 of Proc. Amer. Math. Soc., B. Brown and N. McCoy showed that every (not necessarily commutative) ring has an ideal consisting of elements for which there is an such that , and maximal with respect to this property. Considering only the case when is commutative and has an identity element, it is often not easy to determine when is not just the zero ideal. We determine when this happens in a number of cases: Namely when at least one of or has a von Neumann inverse,...
Download Results (CSV)