Oka-analyticity of the essential spectrum
Se è un'applicazione olomorfa di un domìnio di in un'algebra topologica che gode di certe proprietà, si dimostra che la multifunzione «spettro» è analitica secondo Oka.
Se è un'applicazione olomorfa di un domìnio di in un'algebra topologica che gode di certe proprietà, si dimostra che la multifunzione «spettro» è analitica secondo Oka.
Starting with the computation of the appropriate Poisson kernels, we review, complement, and compare results on drifted Laplace operators in two different contexts: homogeneous trees and the hyperbolic half-plane.
In this paper we study the Radon transform on the set of horocycles of a homogeneous tree , and describe its image on various function spaces. We show that the functions of compact support on that satisfy two explicit constitute the image under of functions of finite support on . We extend these results to spaces of functions with suitable decay on , whose image under satisfies corresponding decay conditions and contains distributions on that are not defined pointwise. We also show...
We study the law of functionals whose prototype is ∫0 +∞ eBs (ν) dWs (μ), where B(ν) and W(μ) are independent Brownian motions with drift. These functionals appear naturally in risk theory as well as in the study of in variant diffusions on the hyperbolic...
Page 1