Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

The energy method for a class of hyperbolic equations

Enrico Jannelli — 1985

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In questa nota viene introdotto un nuovo metodo per ottenere espressioni esplicite dell'energia della soluzione dell'equazione iperbolica ( t ) m u + | ν | + j m ; j m - 1 a ν , j ( t ) ( x ) ν ( t ) j u = 0. Stimando opportunamente queste espressioni si ottengono nuovi risultati di buona positura negli spazi di Gevrey per l'equazione ( ) quando questa è debolmente iperbolica.

Weakly hyperbolic equations of second order well-posed in some Gevrey classes

Enrico Jannelli — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

L’equazione u t t = i j = 1 n ( a i j ( x , t ) u x j ) x i in condizioni di debole iperbolicità ( i j = 1 n a i j ( x , t ) ξ i ξ j 0 ) , è ben posta negli spazi di Gevrey γ l o c ( s ) con 1 s < 1 + σ 2 , purché a i j sia di Gevrey in x di ordine s e risulti [ i j = 1 n a i j ( x , t ) ξ i ξ j ] 1 / σ B V ( [ 0 , T ] : 𝐋 l o c )

Weakly hyperbolic equations of second order well-posed in some Gevrey classes

Enrico Jannelli — 1983

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

L’equazione u t t = i j = 1 n ( a i j ( x , t ) u x j ) x i in condizioni di debole iperbolicità ( i j = 1 n a i j ( x , t ) ξ i ξ j 0 ) , è ben posta negli spazi di Gevrey γ l o c ( s ) con 1 s < 1 + σ 2 , purché a i j sia di Gevrey in x di ordine s e risulti [ i j = 1 n a i j ( x , t ) ξ i ξ j ] 1 / σ B V ( [ 0 , T ] : 𝐋 l o c )

The energy method for a class of hyperbolic equations

Enrico Jannelli — 1985

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

In questa nota viene introdotto un nuovo metodo per ottenere espressioni esplicite dell'energia della soluzione dell'equazione iperbolica ( t ) m u + | ν | + j m ; j m - 1 a ν , j ( t ) ( x ) ν ( t ) j u = 0 . Stimando opportunamente queste espressioni si ottengono nuovi risultati di buona positura negli spazi di Gevrey per l'equazione ( ) quando questa è debolmente iperbolica.

Fourth-order nonlinear elliptic equations with critical growth

David E. EdmundsDonato FortunatoEnrico Jannelli — 1989

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

Page 1

Download Results (CSV)