Fourth-order nonlinear elliptic equations with critical growth
David E. Edmunds; Donato Fortunato; Enrico Jannelli
- Volume: 83, Issue: 1, page 115-119
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topEdmunds, David E., Fortunato, Donato, and Jannelli, Enrico. "Fourth-order nonlinear elliptic equations with critical growth." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 83.1 (1989): 115-119. <http://eudml.org/doc/289058>.
@article{Edmunds1989,
abstract = {In this paper we consider a nonlinear elliptic equation with critical growth for the operator $\Delta^\{2\}$ in a bounded domain $\Omega \subset \mathbb\{R\}^\{n\}$. We state some existence results when $n \ge 8$. Moreover, we consider $5 \le n \le 7$, expecially when $\Omega$ is a ball in $\mathbb\{R\}^\{n\}$.},
author = {Edmunds, David E., Fortunato, Donato, Jannelli, Enrico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Biharmonic operator; Critical exponent; Sobolev embeddings},
language = {eng},
month = {12},
number = {1},
pages = {115-119},
publisher = {Accademia Nazionale dei Lincei},
title = {Fourth-order nonlinear elliptic equations with critical growth},
url = {http://eudml.org/doc/289058},
volume = {83},
year = {1989},
}
TY - JOUR
AU - Edmunds, David E.
AU - Fortunato, Donato
AU - Jannelli, Enrico
TI - Fourth-order nonlinear elliptic equations with critical growth
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 115
EP - 119
AB - In this paper we consider a nonlinear elliptic equation with critical growth for the operator $\Delta^{2}$ in a bounded domain $\Omega \subset \mathbb{R}^{n}$. We state some existence results when $n \ge 8$. Moreover, we consider $5 \le n \le 7$, expecially when $\Omega$ is a ball in $\mathbb{R}^{n}$.
LA - eng
KW - Biharmonic operator; Critical exponent; Sobolev embeddings
UR - http://eudml.org/doc/289058
ER -
References
top- BREZIS, H. and NIRENBERG, L., 1983. Positive solutions of non-linear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math.8: 437-477. Zbl0541.35029MR709644DOI10.1002/cpa.3160360405
- CAPOZZI, A., FORTUNATO, D. and PALMIERI, G., 1985. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré, 2: 463-470. Zbl0612.35053MR831041
- CERAMI, G., FORTUNATO, D. and STRUWE, M., 1984. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré, 1: 341-350. Zbl0568.35039MR779872
- LIONS, P.L., 1985. The Concentration-Compactness Principle in the Calculus of Variations. The limit case, Part 1. Revista Math. Iberoamericana, 1: 145-201. Zbl0704.49005MR834360DOI10.4171/RMI/6
- PÓLYA, G. and SZEGÖ, G., 1951. Isoperimetric Inequalities in Mathematical Physics. Princeton. Zbl0044.38301MR43486
- PUCCI, P. and SERRIN, J., 1986. A General Variational Identity. Indiana Univ. Math. J., 35: 681-703. Zbl0625.35027MR855181DOI10.1512/iumj.1986.35.35036
- PUCCI, P. and SERRIN, J.. Critical exponents and critical dimensions for polyharmonic operators, to appear. Zbl0717.35032MR1054124
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.