Fourth-order nonlinear elliptic equations with critical growth

David E. Edmunds; Donato Fortunato; Enrico Jannelli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1989)

  • Volume: 83, Issue: 1, page 115-119
  • ISSN: 0392-7881

Abstract

top
In this paper we consider a nonlinear elliptic equation with critical growth for the operator Δ 2 in a bounded domain Ω n . We state some existence results when n 8 . Moreover, we consider 5 n 7 , expecially when Ω is a ball in n .

How to cite

top

Edmunds, David E., Fortunato, Donato, and Jannelli, Enrico. "Fourth-order nonlinear elliptic equations with critical growth." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 83.1 (1989): 115-119. <http://eudml.org/doc/289058>.

@article{Edmunds1989,
abstract = {In this paper we consider a nonlinear elliptic equation with critical growth for the operator $\Delta^\{2\}$ in a bounded domain $\Omega \subset \mathbb\{R\}^\{n\}$. We state some existence results when $n \ge 8$. Moreover, we consider $5 \le n \le 7$, expecially when $\Omega$ is a ball in $\mathbb\{R\}^\{n\}$.},
author = {Edmunds, David E., Fortunato, Donato, Jannelli, Enrico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Biharmonic operator; Critical exponent; Sobolev embeddings},
language = {eng},
month = {12},
number = {1},
pages = {115-119},
publisher = {Accademia Nazionale dei Lincei},
title = {Fourth-order nonlinear elliptic equations with critical growth},
url = {http://eudml.org/doc/289058},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Edmunds, David E.
AU - Fortunato, Donato
AU - Jannelli, Enrico
TI - Fourth-order nonlinear elliptic equations with critical growth
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 115
EP - 119
AB - In this paper we consider a nonlinear elliptic equation with critical growth for the operator $\Delta^{2}$ in a bounded domain $\Omega \subset \mathbb{R}^{n}$. We state some existence results when $n \ge 8$. Moreover, we consider $5 \le n \le 7$, expecially when $\Omega$ is a ball in $\mathbb{R}^{n}$.
LA - eng
KW - Biharmonic operator; Critical exponent; Sobolev embeddings
UR - http://eudml.org/doc/289058
ER -

References

top
  1. BREZIS, H. and NIRENBERG, L., 1983. Positive solutions of non-linear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math.8: 437-477. Zbl0541.35029MR709644DOI10.1002/cpa.3160360405
  2. CAPOZZI, A., FORTUNATO, D. and PALMIERI, G., 1985. An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré, 2: 463-470. Zbl0612.35053MR831041
  3. CERAMI, G., FORTUNATO, D. and STRUWE, M., 1984. Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré, 1: 341-350. Zbl0568.35039MR779872
  4. LIONS, P.L., 1985. The Concentration-Compactness Principle in the Calculus of Variations. The limit case, Part 1. Revista Math. Iberoamericana, 1: 145-201. Zbl0704.49005MR834360DOI10.4171/RMI/6
  5. PÓLYA, G. and SZEGÖ, G., 1951. Isoperimetric Inequalities in Mathematical Physics. Princeton. Zbl0044.38301MR43486
  6. PUCCI, P. and SERRIN, J., 1986. A General Variational Identity. Indiana Univ. Math. J., 35: 681-703. Zbl0625.35027MR855181DOI10.1512/iumj.1986.35.35036
  7. PUCCI, P. and SERRIN, J.. Critical exponents and critical dimensions for polyharmonic operators, to appear. Zbl0717.35032MR1054124

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.