The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 2 of 2

Showing per page

Order by Relevance | Title | Year of publication

On a two-variable zeta function for number fields

Jeffrey C. LagariasEric Rains — 2003

Annales de l’institut Fourier

This paper studies a two-variable zeta function Z K ( w , s ) attached to an algebraic number field K , introduced by van der Geer and Schoof, which is based on an analogue of the Riemann-Roch theorem for number fields using Arakelov divisors. When w = 1 this function becomes the completed Dedekind zeta function ζ ^ K ( s ) of the field K . The function is a meromorphic function of two complex variables with polar divisor s ( w - s ) , and it satisfies the functional equation Z K ( w , s ) = Z K ( w , w - s ) . We consider the special case K = , where for w = 1 this function...

Page 1

Download Results (CSV)