We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on
-energy estimates on discrete functions in physical space....
We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on
-energy estimates on discrete functions in physical space....
We extend our results on fictitious domain methods for Poisson’s problem to the case of incompressible elasticity, or Stokes’ problem. The mesh is not fitted to the domain boundary. Instead boundary conditions are imposed using a stabilized Nitsche type approach. Control of the non-physical degrees of freedom, , those outside the physical domain, is obtained thanks to a ghost penalty term for both velocities and pressures. Both inf-sup stable and stabilized velocity pressure pairs are considered....
A continuous finite element method to approximate Friedrichs' systems is
proposed and analyzed. Stability is achieved by penalizing the jumps
across mesh
interfaces of the normal derivative of some components of the discrete solution.
The convergence analysis leads to optimal convergence rates
in the graph norm and suboptimal of order ½ convergence rates in
the
-norm. A variant of the method specialized to
Friedrichs' systems associated with elliptic PDE's in mixed form and
reducing...
We analyze a two-stage implicit-explicit Runge–Kutta scheme for time discretization of advection-diffusion equations. Space discretization uses continuous, piecewise affine finite elements with interelement gradient jump penalty; discontinuous Galerkin methods can be considered as well. The advective and stabilization operators are treated explicitly, whereas the diffusion operator is treated implicitly. Our analysis hinges on
-energy estimates on discrete functions in physical space....
We formulate a finite element method for the computation of solutions to an anisotropic phase-field model for a binary alloy. Convergence is proved in the -norm. The convergence result holds for anisotropy below a certain threshold value. We present some numerical experiments verifying the theoretical results. For anisotropy below the threshold value we observe optimal order convergence, whereas in the case where the anisotropy is strong the numerical solution to the phase-field equation does not...
Download Results (CSV)