Our purpose is to apply suitable maximum principles in order to obtain Bernstein type properties for two-sided hypersurfaces immersed with constant mean curvature in a Killing warped product , whose curvature of the base Mⁿ satisfies certain constraints and whose warping function ρ is concave on Mⁿ. For this, we study situations in which these hypersurfaces are supposed to be either parabolic, stochastically complete or, in a more general setting, L¹-Liouville. Rigidity results related to entire...
In this paper, we extend a technique due to Romero et al. establishing sufficient conditions to guarantee the parabolicity of complete spacelike hypersurfaces immersed into a Lorentzian Killing warped product whose Riemannian base has parabolic universal Riemannian covering. As applications, we obtain rigidity results concerning these hypersurfaces. A particular study of entire Killing graphs is also made.
The purpose of this article is to obtain sharp estimates for the first eigenvalue of the stability operator of constant mean curvature closed hypersurfaces immersed into locally symmetric Riemannian spaces satisfying suitable curvature conditions (which includes, in particular, a Riemannian space with constant sectional curvature). As an application, we derive a nonexistence result concerning strongly stable hypersurfaces in these ambient spaces.
Download Results (CSV)