On a Class of Retarded Partial Differential Equations.
Si studiano le proprietà delle soluzioni dell'equazione semilineare astratta quando è il generatore infinitesimale di un semigruppo analitico in uno spazio di Banach. Vengono provati nuovi teoremi di regolarità anche nel caso in cui non è continuo in tutto lo spazio.
Vengono dati nuovi teoremi di regolarità per le soluzioni dell'equazione nel caso in cui è il generatore infinitesimale di un semigruppo analitico in uno spazio di Banach e è una funzione continua.
Sono dati nuovi teoremi di esistenza per soluzioni regolari di equazioni di evoluzione paraboliche astratte con applicazioni all'equazione del calore in spazi di funzioni holderiane e alle equazioni semilineari.
Vengono dati nuovi teoremi di regolarità per le soluzioni dell'equazione nel caso in cui è il generatore infinitesimale di un semigruppo analitico in uno spazio di Banach e è una funzione continua.
- Si studia l'esistenza e l'Tunicità delle soluzioni stazionarie di una equazione funzionale non lineare proveniente dalla dinamica di popolazione e se ne dimostra la stabilità.
Sono dati nuovi teoremi di esistenza per soluzioni regolari di equazioni di evoluzione paraboliche astratte con applicazioni all'equazione del calore in spazi di funzioni holderiane e alle equazioni semilineari.
Si studiano le proprietà delle soluzioni dell'equazione semilineare astratta quando è il generatore infinitesimale di un semigruppo analitico in uno spazio di Banach. Vengono provati nuovi teoremi di regolarità anche nel caso in cui non è continuo in tutto lo spazio.
Si studia un’equazione funzionale non lineare proveniente dalla dinamica di popolazione. Si dimostra l’esistenza globale e l'unicità di una soluzione positiva. Inoltre si studia la dipendenza della popolazione totale dai dati.
Si studia il problema di Cauchy per una equazione parabolica semilineare con ritardo. Si dimostra l'esistenza e l'unicità della soluzione e la dipendenza continua da tutti i dati. Inoltre si studia la regolarità e l'esistenza in grande.
Viene dimostrata l’esistenza e l’unicità globale della soluzione di un’equazione funzionale in uno spazio di Hilbert e si caratterizza il generatore infinitesimale del semigruppo ad essa associato. Il risultato è applicato ad equazioni integrodifferenziali a derivate parziali di tipo parabolico in cui compaiono argomenti con ritardo (discreto e continuo) nelle derivate spaziali di ordine massimo.
In questo lavoro si considera un’equazione alle derivate parziali del primo ordine con una condizione sulla frontiera di tipo integrale. Si studia resistenza, l'unicità e il comportamento asintotico delle soluzioni.
Viene dimostrata l’esistenza e l’unicità globale della soluzione di un’equazione funzionale in uno spazio di Hilbert e si caratterizza il generatore infinitesimale del semigruppo ad essa associato. Il risultato è applicato ad equazioni integrodifferenziali a derivate parziali di tipo parabolico in cui compaiono argomenti con ritardo (discreto e continuo) nelle derivate spaziali di ordine massimo.
In questo lavoro si considera un’equazione alle derivate parziali del primo ordine con una condizione sulla frontiera di tipo integrale. Si studia resistenza, l'unicità e il comportamento asintotico delle soluzioni.
Page 1